Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of FUTOSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Okoro, Emeka Emmanuel"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Gas process system emepirical tool for predicting hydrate formation
    (U. P., 2018) Okoro, Emeka Emmanuel; Ekeinde, Evelyn Bose; Igwilo, Kevin; Dosunmu, Adewale
    The rapid formation of gas hydrates, promoted by typical high pressure/ low temperature operating conditions in deep water installations, is considered one of the most difficult problems with flow assurance. Understanding the conditions for the formation of hydrates is necessary to overcome the problems associated with hydrates. Ideally, the conditions for the formation of gas hydrates are determined experimentally in the laboratory; but this data is not always available. Therefore, corre￾lation is used to determine the conditions for gas hydrate formation. Several models have been proposed that require more complex and longer computations to predict the conditions for the formation of gas hydrate over the years. In this study, it is crucial to develop a reliable and easy-to￾use method for oil and gas practitioners’. The proposed correlation extends over a wide range of pressure (2000 to 25000kPa) and molecular weights (16 to 27). Consistent and accurate results of the proposed pressure range, temperature, and molecular weight are presented. Statistical error analysis is used to appraise the efficiency and accuracy of the correlation coefficient for estimating the formation of gas hydrate. This will guide designer and operator to select the optimal correlation for a particular application.
CONTACT US
  • Federal University of Technology Owerri, Owerri West Imo State, Nigeria
  • E-mail : futospace@futo.edu.ng
USEFUL LINKS
  • FUTO OER
  • ResearchGate
  • Online Library
  • Library Website
SOCIAL MEDIA

Federal University of Technology, Owerri © 2025 Supported by ACE-FUELS,  Powered by Eko-Konnect

  • Cookie settings
  • Send Feedback