Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of FUTOSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Oguzie, Emeka Emanuel"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Corrosion behavior of stainless steel in seawater in the presence of sulfide
    (MPDI, 2023-03-29) Gudic, Senka; Vrsalovic, Ladislav; Matošin, Ante; Krolo, Jure; Oguzie, Emeka Emanuel; Nagode, Ales
    The effect of temperature (from 288 to 308K) and concentration of sulfide ions (up to 40ppm) on the corrosion behavior of AISI 304L and AISI 316L stainless steels in seawater was studied with measurements of open-circuit potential, linear and potentiodynamic polarization, and electrochemical impedance spectroscopy. An increase in temperature and pollutant concentration negatively affects the corrosion stability of stainless steels at the open circuit (the resistance, compactness, and thickness of the surface layer decrease and the corrosion current increases), in the passive region (the passivation current increases, the depassivation potential decreases, and the passive potential region narrows), and in the transpassive potential region (the rate of metal dissolution increases). The occurrence of pitting corrosion on the surface of the samples was confirmed with optical microscopy and a non-contact 3D profilometer. A few large pits (depth 80–100 m and width 100 m) were formed on the surface of AISI 304L steel, while several smaller pits (depth 40–50 m and width 50 m) were formed on the surface of AISI 316L steel. With increasing temperature and sulfide ion concentration, the width, depth, and density of the pits increased on both steel samples. In the studied temperature and concentration range of sulfide ions, the AISI 316L steels exhibited higher corrosion resistance. Overall, the influence of sulfide ions on steel corrosion was more pronounced than the influence of temperature
CONTACT US
  • Federal University of Technology Owerri, Owerri West Imo State, Nigeria
  • E-mail : futospace@futo.edu.ng
USEFUL LINKS
  • FUTO OER
  • ResearchGate
  • Online Library
  • Library Website
SOCIAL MEDIA

Federal University of Technology, Owerri © 2025 Supported by ACE-FUELS,  Powered by Eko-Konnect

  • Cookie settings
  • Send Feedback