Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of FUTOSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ogukwe, C. N."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Inhibition of mild steel corrosion in sulphuric acid using indigo dye and synergistic halide additive
    (Elsevier Ltd, 2004) Oguzie, E. E.; Unaegbu, C.; Ogukwe, C. N.; Okolue, B. N; Onuchukwu, A. I.
    Gravimetric method was used to study the inhibitory properties of indigo dye during corrosion of mild steel in aerated sulphuric acid solutions at 30–50°C. The effect of addition of halide salts KCl, KBr and KI was also investigated. The corrosion rates in all systems studied increased with rise in temperature. The inhibition efficiency of indigo dye increased with concentration and synergistically increased on addition of halide salts. Temperature studies revealed increased inhibition efficiency at higher temperatures, which is suggestive of chemisorption mechanism. The inhibitor adsorption characteristics were approximated by Frumkins isotherm and Flory–Huggins isotherm. Activation energy for Fe dissolution in sulphuric acid was observed to reduce from 54.6kJmol−1 in the uninhibited system to 34.9kJmol−1 in the inhibited system
CONTACT US
  • Federal University of Technology Owerri, Owerri West Imo State, Nigeria
  • E-mail : futospace@futo.edu.ng
USEFUL LINKS
  • FUTO OER
  • ResearchGate
  • Online Library
  • Library Website
SOCIAL MEDIA

Federal University of Technology, Owerri © 2025 Supported by ACE-FUELS,  Powered by Eko-Konnect

  • Cookie settings
  • Send Feedback