Browsing by Author "Igwilo, Kevin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Gas process system emepirical tool for predicting hydrate formation(U. P., 2018) Okoro, Emeka Emmanuel; Ekeinde, Evelyn Bose; Igwilo, Kevin; Dosunmu, AdewaleThe rapid formation of gas hydrates, promoted by typical high pressure/ low temperature operating conditions in deep water installations, is considered one of the most difficult problems with flow assurance. Understanding the conditions for the formation of hydrates is necessary to overcome the problems associated with hydrates. Ideally, the conditions for the formation of gas hydrates are determined experimentally in the laboratory; but this data is not always available. Therefore, correlation is used to determine the conditions for gas hydrate formation. Several models have been proposed that require more complex and longer computations to predict the conditions for the formation of gas hydrate over the years. In this study, it is crucial to develop a reliable and easy-touse method for oil and gas practitioners’. The proposed correlation extends over a wide range of pressure (2000 to 25000kPa) and molecular weights (16 to 27). Consistent and accurate results of the proposed pressure range, temperature, and molecular weight are presented. Statistical error analysis is used to appraise the efficiency and accuracy of the correlation coefficient for estimating the formation of gas hydrate. This will guide designer and operator to select the optimal correlation for a particular application.Item Open Access Offshore gas well flow and orifice metering system: An overview(U. P., 2017-12-18) Okoro, Emeka E.; Igwilo, Kevin; Mamudu, Angela; Onuh, Charles; Ekeinde, Bose EvelynThis research presents a concise account of offshore surface well test from objective, organization, to practical approach and in relation to orifice metering system of natural gas; against the perspective of regulatory standards. With reference to reliability, availability, affordability and including control measures governing the design, the orifice meter sometimes called a head loss flow meter is chosen most often because of its reputation in the oil and gas industry. Alternative metering system of natural gas, including robust and cost effective innovations within the industry which addressed some key limitations of orifice meter was examined. The advanced flow computer with transducers suited for orifice measurement installations is a cost effective electronic flow real time measurement system. It has telemetry features and improved accuracy under fluctuating flow conditions based on functional differential pressure root mean squared volume calculation principles. These new developments and their capabilities have reduced the market share of the mechanical orifice chart meters. Except that Electronic flow meters has environmental limitations; thus, the proven mechanical orifice metering systems are still an effective solution for many flow measurement applications.