Browsing by Author "Dosunmu, Adewale"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Gas process system emepirical tool for predicting hydrate formation(U. P., 2018) Okoro, Emeka Emmanuel; Ekeinde, Evelyn Bose; Igwilo, Kevin; Dosunmu, AdewaleThe rapid formation of gas hydrates, promoted by typical high pressure/ low temperature operating conditions in deep water installations, is considered one of the most difficult problems with flow assurance. Understanding the conditions for the formation of hydrates is necessary to overcome the problems associated with hydrates. Ideally, the conditions for the formation of gas hydrates are determined experimentally in the laboratory; but this data is not always available. Therefore, correlation is used to determine the conditions for gas hydrate formation. Several models have been proposed that require more complex and longer computations to predict the conditions for the formation of gas hydrate over the years. In this study, it is crucial to develop a reliable and easy-touse method for oil and gas practitioners’. The proposed correlation extends over a wide range of pressure (2000 to 25000kPa) and molecular weights (16 to 27). Consistent and accurate results of the proposed pressure range, temperature, and molecular weight are presented. Statistical error analysis is used to appraise the efficiency and accuracy of the correlation coefficient for estimating the formation of gas hydrate. This will guide designer and operator to select the optimal correlation for a particular application.Item Open Access Loss circulation prevention during drilling operation - risk analysis approach and its implications(Trans Tech Publications Ltd., 2020) Okoro, Emmanuel E.; Okafor, Ikechukwu S.; Igwilo, Kevin C.; Orodu, Kale B.; Dosunmu, AdewaleDrilling engineers and operators are stuck with challenges associated with loss circulation of drilling fluids in wellbores during drilling operation. At such times, a clear and careful decision is required in order to minimize cost or save resources that would have been lost in the bid to remedy the situation. This then informs the need to deploy reliable tools that will inform useful decisions as drawn from a thorough risk-analysis coined from the information gathered from the formation characteristics and operating pressure. In this study, a real-time statistic based approach was adopted in carrying out risk-evaluation of loss circulation events in a wellbore. Based on the expected opportunity loss analysis, it is often non-negotiable to consider other options when the analytical solution suggests that the well should be “abandoned”. For the decision tree, at the decision node, D1, the expected loss of the seal off zone option is $161.25, the expected loss of the drill ahead option is .2 and the expected loss of the abandon option is $13.2. Since the expected loss of the abandon option is less than the expected value of both the seal off and the drill ahead option, it is recommended to abandon the well. Furthermore, the risk analysis proved to be a veritable tool considering the cost implications of other options; and can also serve as basis for automated decision-making.