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ABSTRACT 

This research work presents Free Vibration Analysis of Rectangular Thin Plate Using Finite    
Element Method. The analysis is limited to five boundary conditions. These boundary 

conditions are plates clamped on four edges (CCCC), plates clamped and simply supported 
on adjacent edges (CCSS), plates clamped on two opposite edges and simply supported on 
the other two opposite edges (CSCS), plates clamped on one edge and simply supported on 

three edges (CSSS) and plates clamped on three edges and simply supported on one edge 
(CCCS). A shape function which satisfies the twelve degrees of freedom of plate was 

assembled from the Pascal triangle to formulate a stiffness matrix which is refered to as the 
general flexural element stiffness matrix of thin rectangular plate. The fourth order 
differential equation of plate in vibration was analized with the shape function to derive the 

general stiffness (K) of the plate and inertia stiffness (K i) subject to vibration. Analysis with 
the finite element method, the individual stiffness for CCCC, CCSS, CSCS, CSSS, CCCS 

was obtained. A grid size discretization, one of the major importance of finite element 
method; was applied to determine the approximate values of the fundamental natural 
frequencies of the rectangular thin plates in vibration. A MATLAB program was generated to 

compute the fundamental natural frequencies    for plates of various aspect ratios (from 1.0 

to 2.0 at an increment of 0.1) and grid size (n) (from 3 to 21 etc. at odd number increment) 
and the results were tabulated. The odd number increment for the grid size is to make the 

central deflection of the plate concide with the central node of the plate for easy calculation. 
The maximum percentage difference of the natural frequencies obtained between this study 
and previous research works done by Onwuka et al., Njoku, Leissa et al., Sakata et al., 

Chakraverty and Gorman are 0.4060%, 0.4070% and 3.1600% for CCCC boundary 
condition, 0.5503%, 0.5675% and 0.1283% for CCSS boundary condition, 0.4025%, 

0.1629% and 0.1208% for CSCS boundary condition, 3.6188%, 1.4968% and 0.1034% for 
CSSS boundary condition and 0.4394% and 0.1461% for CCCS boundary condition. The 
natural frequency values obtained by the present study are close when compared with other 

approximate methods of Onwuka et al., Njoku, Leissa et al., Sakata et al., Chakraverty and 
Gorman which are clearly shown on the line graph. 

 
 
Keywords: Vibration Analysis, Rectangular Thin Plate, Finite element, Stiffness, MATLAB.
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CHAPTER ONE 

INTRODUCTION  

1.1 Background Information  

A plate is a structural element that is relatively thin in Y direction compared with the X and Z 

direction, and it’s flat. From a geometrical point of view, a plate is very much like a membrane. 

Typically, the flexural (bending) stiffness arises because a plate is considerably thicker than a 

membrane relative to its other dimensions. Although a plate is typically thicker than a 

membrane, the ratio of its thickness to its average lateral dimension is usually taken to exceed 

1/20 to represent its fundamental vibration mode reasonably accurately with classical thin plate 

theory (Leissa and Qatu, 2011). 

 
Plates are important structural elements. They may exist in many applications like in Aeroplane, 

Ship deck, concrete slab etc. In civil engineering, flat panels exist in various steel or concrete 

structures. They may be various shapes like rectangular, circular, rhombic, triangular, trapezoidal 

and others. Although shells have indeed, wider application in almost every engineering field, 

plates also present a reasonable introduction to the analysis of those complex structures.  

Plates give us the chance to study the influence of bending in two dimensions without having 

tangential stresses caused by transverse vibration motion (Leissa and Qatu, 2011). 

 
Structural components like plates are generally subjected to dynamic loading during their 

working life. Very often these components may have to perform in a severe dynamic 

environment where the maximum damage results from the resonant vibration. In the vehicles 

used in transport such as ships and aircrafts, vibration results in discomfort to the crew and 
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passengers. Human reaction to vibration in the range of 4Hz to 16Hz is more sensitive because 

natural frequencies of the body can be excited and may cause serious physiological effects. 

 
Susceptibility to fracture of materials due to vibration is determined by stress and frequency. The 

maximum amplitude of the vibration must be limited for the safety of the structure. Hence 

vibration analysis has become very important in designing a structure to know in advance its 

response and to take necessary steps to control the structural vibrations and its amplitudes 

(Asmin, 2008). 

 
The finite element analysis is a powerful computational technique for solving engineering 

problems having complex geometries that are subjected to general boundary conditions. While 

the analysis is being carried out, the field variables are varied from point to point, thus 

possessing an infinite number of solutions in the domain. To overcome this difficulty, finite 

element analysis is used; the system is discretized into a finite number of parts known as 

elements by expressing the unknown field variables in terms of the assumed approximating 

functions within each element. For each element, the systematic approximate solution is 

constructed by applying the variational or weighted residual methods. These functions (also 

called interpolation function) are included in terms of field variables or specific points referred to 

as nodes (Vanam Rajyalakshmi and Inala, 2012). 

 

The essential feature of the finite element method is the means by which the differential 

equations of equilibrium of the elastic continuum are approximated by a set of algebraic 

equilibrium equations. This procedure is generally looked upon as the situation for the actual 

continuum of an assemblage of discrete structural elements, interconnected at a finite number of 

modal points. In effect, the continuum may be visualized as being physically cut up into finite 
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element system, the material properties of the original material being retained in the elements. 

The analysis involves the evaluation of the element elastic properties, which are represented by 

the stiffness matrix expressing the relationship between element nodal forces and displacements. 

By appropriate superposition of these element stiffnesses, the stiffness matrix of the entire 

assemblage may be obtained. Finally, the nodal equilibrium equations, expressed in terms of this 

structural stiffness matrix, must be solved simultaneously for nodal displacement of the complete 

system. (Ray and Joseph, 2003). 

 

In addition, the finite element method is endowed with three basic features that account for its 

superiority over other competing methods. First, a geometrically simple subdomain, called finite 

elements. Second, over each finite element, the approximation functions are derived using the 

basic idea that any continuous function can be represented by a linear combination of algebraic 

polynomials. Third, algebraic relations among the undetermined coefficients (i.e., nodal values) 

are obtained by satisfying the governing equations, often in a weighted-integral sense, over each 

element. Thus, the finite element method can be viewed, in particular, as an element-wise 

application of the Rayleigh-Ritz or Weighted-Residual methods (Reddy, 1993). 

 

In conclusion, this study is a finite element method and its approach is to analyze a thin 

rectangular plate under free vibration. The Paschal triangular shape function and the fourth order 

differential equation of plate in vibration is used to generate a stiffness 

matrix and the inertia matrix which when applied to the plate model produces a numerical 

solution of the plate under free vibration. This research developed a MATLAB program to 

reduce the calculation errors and the time spent during the plate analysis. Application of different 
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support condition in the finite element model gives the value of the natural frequencies with 

respect to the aspect ratio provided. The fundamental natural frequencies are the most important 

part of free vibration of plates and this research sought to obtain such frequencies.  Figure 1.1 

shows a typical plate model that will be used in this study. 

 

 

 

 

 

 

Figure 1.1    A thin rectangular plate divided into finite element with numbered edges and X, Y 
axis, including plate dimension ‘a’ and ‘b’ 
 

The configuration of the plate shown in Figure 1.2 will be adopted in the analysis of plate 

problems in this study. The meaning of each plate boundary condition is listed as follows. 

CCCC         Clamped on four edges. 

CSSS          Clamped on one edge and simply supported on the remaining three edges. 

CCCS         Clamped on three edges and simply supported on one edge. 

CCSS         Clamped on adjacent edges and simply supported on the other edge. 

CSCS    Clamped on two opposite edges and simply supported on the other two       

                      opposite edges. 

 

 

 

 

a 

Edge 1 

Edge 4 Edge 2 

Edge 3 

b 

X 

Y 
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                        (a) CCCC                                   (b) CSSS        

 

 

 

             (c) CCCS  (d) CCSS (e) CSCS 

 

Figures 1.2 (a to f)   Rectangular finite plates of different boundary condition 

 

 

1.2     Problem Statement 

          Formulating the general flexural element stiffness matrix of thin rectangular plate becomes 

a significant issue due to the boundary conditions and chosen deflection shape function 

constraints. 

         Application of the general flexural element stiffness matrix equation of a plate in order to 

obtain the stiffness matrix and the inertia matrix took some time and require a great deal of 

concentration to avoid confusion.  The stiffness matrix of the plate becomes tedious and 

cumbersome as the plate is discretized further. Hence, there is a need to employ a 

mathematical tool that can handle the analysis effectively. The mathematical tool used in 

the analysis of plate is MATLAB computer program.  
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1.3   Objectives  

The main objective of this study is to perform free vibration analysis of rectangular thin plate 

using Finite Element Method (FEM). The specific objectives are as follows: 

(i) To formulate the general flexural element stiffness matrix of a thin rectangular plate. 

(ii) To formulate the inertia matrix of a thin rectangular plate. 

(iii) To develop a MATLAB computer program that will use the stiffness matrix and inertia 

matrix to obtain the resonating frequencies of plates of five boundary conditions. 

(iv) To compare the result obtained from the present study with those of other approximate 

methods. 

 

1.4  Justification of Study 

On completion of this work, the following should be benefited from it: 

(i) A good knowledge of the use of Finite Element Method to perform the free vibration 

analysis of a thin rectangular plate. 

(ii) A reliable computer program that gives the approximate resonating frequencies within a 

short time with minimum error 

 
1.5  Scope of Study 

This research work is limited to the free vibration analysis of rectangular thin plates using finite 

element method. The boundary conditions considered for analysis were CCCC, CSSS, CCCS, 

CCSS and CSCS plates. 

Chapter two titled “Literature Review” presents the investigation of different research work 

carried out on vibration and methods of plate analysis by many scholars. Chapter three deals with 

research methodology. This shows the formulation of the general flexural element stiffness 
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matrix of a thin rectangular plate. The general stiffness matrix and inertia matrix equations were 

derived and the fundamental natural frequency equation for the various boundary conditions of 

the plate was obtained. Also, in this chapter, the algorithm for the computer program was listed. 

Results and discussions which is the title of chapter four dealt with obtaining the fundamental 

natural frequency of the plate with various boundary conditions using the MATLAB program 

generated. Aspect ratios ranging from 1.0 to 2.0 with 0.1 increments were also applied. 

Solutions from the present study were compared with the previous works and general discussion 

and comments were made with regards to the comparisons. Chapter five titled “Conclusions and 

Recommendations” dealt with drawing of conclusion based on the results obtained in chapter 

four and the necessary recommendations that follow it. 
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CHAPTER TWO 

                                                   LITERATURE REVIEW 

2.1 Vibration of Plates 

 Vibration is the mechanical oscillation of a particle, member, or a body from its position of 

equilibrium. It is the study that relates the motion of physical bodies to the forces acting on them. 

Plates with different shapes and boundary conditions have applications in different structures 

such as aerospace, machine design, telephone industry, nuclear reactor technology, naval 

structures and earthquake-resistant structures. The dynamic behavior of flexible, flat, thin, 

rectangular plate has received huge attention in recent years due to its technical importance 

(Chakraverty, 2009). 

 

Thin rectangular plate structures are mostly used in the industrialized world and in a broad range 

of engineering applications, for example, electronic circuit board design, solar panels, and bridge 

decks. 

The plate stability which means the ability of a plate structure to withstand sudden change, 

dislodgment, or overthrow when subjected to loading is associated with various physical effects 

that lead to vibration. 

High vibrations of flexible structure systems cause noise, fatigue, wear, destruction, human 

discomfort, and reduced system effectiveness. Due to above defects, the vibration of flexible thin 

plate structures needs to be controlled. In the process of looking for ways to control these 

defects, the vibration of the elastic plates has been treated widely from researchers with different 

boundary conditions, both from theoretical and experimental points of view. It is necessary to 

find an approximate or accurate model of the plate structure to control the vibration of a plate 
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well. Suitable modeling of a dynamic system would result in good control (Tavakolpour, Mat 

Darus, Mailah, and Tokhi, 2010).  

Dynamic effects of time-dependent loads on a structure are studied in structural dynamics. 

Structural dynamics deals with time-independent motions of structures, primarily, with the 

vibration of structures, and analysis of the internal forces associated with them. The dynamics of 

plates can be modeled mathematically by partial differential equations based on Newton’s laws 

or by integral equations based on the considerations of virtual work. 

 The derivation of the governing differential equation of motion is a simple extension of a static 

case by adding effective forces to the plate that result from accelerations of the mass of the plate. 

The various kinds of motion of the plate are the free vibration which deals with the natural 

characteristics of the plates, and these natural vibrations occur at discrete natural frequencies, 

depending only on geometry and materials of plates. The forced vibration which is another kind 

of motion of plate comes in two kinds: a harmonic response, when a periodic force is applied to 

the plate; and a transient response, when the applied force is not a periodic force (Ali-Reza, Jalil, 

Majid, and Habibolahiyan, 2011). 

 
According to Ali-Reza et al. (2011), the differential equation of undamped forced motion of plate 

is as expressed in Equation (2.1). 

      tyx
t

w
htyxtyxwD ,,,,,,

2

2
22




                                                                (2.1) 

Where ρ is the mass density of the material, h is the plate thickness. P and W, are functions of 

time for natural or free vibrations, P(x,y,t) is set to zero i.e. Equation (2.1) was reduced to 

Equation (2.2). 

     0,,,,
2

2
22 




 tyx

t

w
htyxwD                                                                              (2.2)
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2.2           Past Work on Vibration of Plates  

 The first mathematical approach to the membrane of very thin plates was formulated by L. Euler 

in 1766. He solved the problems of free vibrations of rectangular, triangular and circular elastic 

membranes by using the analogy of two system of stretched strings perpendicular to each other. 

His student, Jacques Bernoulli, extended Euler’s analogy to plates by replacing the net of spring 

with a gridwork of beams having only bending rigidity (Szilard, 2004). 

 

 The first-order shear deformation theory (FSDT) has been employed widely to establish finite 

element models for free vibration analysis of the composite laminated plates. The effects of 

lamination and extension-bending coupling, shear and twist-curvature couplings on the lowest 

frequencies and corresponding mode shapes for free vibration of laminated anisotropic 

composite plates was investigated using a finite element method with quadratic interpolation 

functions and five engineering degrees of freedom (DOF). The free and forced vibration 

response of laminated composite folded plate structures was predicted by a nine-node 

Lagrangian plate bending finite element with five engineering DOF per node that incorporated 

rotary inertia. A nine-node isoparametric plate bending elements was used for the analysis of free 

undamped vibration of rectangular isotropic and fiber-reinforced laminated composite plates, and 

an effective mass lumping scheme with rotary inertia was introduced (Zhang and Yang, 2008). 

 

The Free Vibration analysis of stiffened laminated composite plates was performed using the 

layered (Zig Zag) finite element method based on the first-order shear deformation theory. The 

layers of the laminated plate were modeled using nine-node isoparametric degenerated flat shell 

element, and the stiffeners were modeled as there-node isoparametric beam elements based on 

Timoshenko beam theory. Bilinear in-plane displacement constraints were used to maintain the 
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inter-layer continuity, and a special lumping technique was used in deriving the lumped mass 

matrices (Guo, Harik, Wei-Xin, 2002). 

 

  Latheswary,Valsarajan, Sadasiva. (2004) investigated the static and free vibration analysis of 

moderately thick laminated composite plates using a 4-node finite element formulation, based on 

higher-order shear deformation theory and the transient analysis of layered anisotropic plates 

using a shear deformable 9-noded Lagrangian element, based on first-order shear deformation 

theory. 

 

The free vibration analysis of multi-layered thick composite plates was studied by a finite 

element procedure based on an accurate higher-order theory which accounted for the realistic 

vibration of in-plane and transverse displacements through the thickness. The vibration and 

stability problems of cross-ply and angle-ply laminated composite plates were investigated using 

general higher-order theories of laminates which considered the complete effects of transverse 

shear and normal deformations (Matsunaga, 2000 and Matsunaga, 2002). 

 

The free in-plane vibration of rectangular plates involves two independent displacement 

variables, so it becomes more difficult to get its exact solution compared with thin plate vibration 

where there is only a single independent displacement variable. The pioneering work was done 

by Lord Rayleigh, who dealt with what was referred to as ‘Simply supported’ plates. Later 

Gorman obtained the exact solutions for the rectangular plates with two opposite edges simply 

supported, and the remaining edges being both clamped or both free. In Gorman’s work, a 

quarter of the rectangular plate was analyzed to avoid the calculation difficulties and missing 
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problems of repeated Eigenvalues and the interpretations of the mode shapes as well (Gorman, 

2006). 

 

Recently, Xing and Liu (2009) and Xing and Liu (2011) obtained all possible exact solutions for 

isotropic and orthotropic rectangular plate via the direct separation of variables. The exact 

solutions for the isotropic plates with two opposite edge simply supported and the other two 

opposite edges being asymmetrical were not achieved before. In addition, Liu and Xing (2011) 

obtained the exact solutions for free in-plane vibration of rectangular orthotropic plates with four 

edges not being simply supported. 

 

According to Xing, Xu, Liu (2013), the free vibrations of rectangular Mindlin plates; Mindlin 

was the first who gave the exact solution of simply supported plate and investigated the 

frequency variation of plates; a pair of parallel edges of which are simply supported, and the 

other pair are free. Later Srinivas (1970) obtained the exact solutions for the homogeneous and 

laminated rectangular Mindlin plates with four simply supported edges while Mindlin obtained 

the exact solutions, upon two main restrictions:  

 
(i) That the length/width must be a ratio of integers. 

(ii) That for each value of Poisson’s ratio, all the allowable modes must have the same 

frequency. 

 
Xiang and Wei (2004) employed the Levy solution approach in conjunction with the state space 

technique to derive the analytical Eigensolutions of rectangular Mindlin plates with two opposite 
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edges simply supported. Hashemi and Arsanjani (2005) presented the exact characteristic 

equations for plates with one pair of opposite plate edges simply supported. 

 

Shimpi and Patel (2006) obtained the exact solutions of a simply supported plate. Thai and Kim 

(2012) obtained the Levy-type exact solutions for plates with two opposite edges simply 

supported and the other two edges having arbitrary boundary conditions by applying the state 

space approach. 

 Senjanovic and Tomic (2013) reduced a system of three equations to a single equation in terms 

of bending deflection only which was fundamental variable and obtained closed-form solutions 

for a simply supported plate and the characteristic equation for a plate with two opposite edges 

simply supported. 

 

Gupta, Anupam and Dharam (2009) discussed the effect of thermal gradient on some vibration 

problems of orthotropic visco-elastic plates of variable thickness. He solved the problem of 

thermal effect on vibration of a non-homogeneous orthotropic rectangular plate having a bi-

directional parabolically varying thickness and free vibration of a clamped visco-elastic 

rectangular plate having bi-direction exponentially thickness variations. 

 

Kharde, Mahale, Bhosale and Thorat (2013) developed flexural vibration of thick isotropic plates 

by using exponential shear deformation theory. He used the exponential term in its displacement 

field to calculate the strain and stresses, satisfying the stress-free boundary conditions at the top 

and bottom of the plate. The principle of virtual work approach was used to obtain the governing 

differential equations and boundary conditions. 
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Aginam, Chdolue and Ezeagu (2012) used the direct variation method in the analysis of isotropic 

thin rectangular plate. A mathematical model that is based on direct variational procedures and 

potential energy principle was developed and successfully applied to thin rectangular plates with 

two opposite edges clamped and other edges simply supported and thin rectangular plate with 

one edge clamped and the three other sides simply supported. The coordinate functions, which 

must satisfy the geometric and natural boundary conditions were carefully constructed and 

applied to classical plate equation. 

 

 In vibration problems of rectangular Kirchhoff plates, exact solutions were limited to some 

boundary and support conditions. For plates with all edges simply supported or with a pair of 

opposite edges simply supported the Navier and Levy solution methods can be used to generate 

exact value. Reddy (2007). Xing and Liu (2009) presented a new method to obtain exact 

eigensolutions for any combination of separable simply supported and clamped boundary 

conditions. When the plate is arbitrarily supported or elastically restrained along its edges with 

attached concentrated mass and spring elements, its solution resorts to numerical approximate 

method which comes in different approaches i.e. the finite differences and the finite element 

method, the differential quadrature (DQ) and the generalized differential quadrature method 

(GDQ), the supper position method, the analytical numerical combined method, the discrete 

singular convolution method (DSC) and the Rayleigh and Ritz method. 

Recently, Li, Zhang, Du and Liu (2009) described a mathematical approach for analysis of 

rectangular plates with general elastic supports. They assume displacement solution in the form 
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of double Fourier series with supplementary terms given by products of single Fourier series and 

sufficient smooth functions. 

 

Lorenzo (2011) highlighted that Ritz technique has conceptual simplicity, wide flexibility, high 

reliability and computational efficiency in solving the vibrational problem of thin plates. The 

Ritz procedure consists in approximating the normal displacement variable through a linear 

combination of global assumed functions, known as admissible functions, trial functions or basis 

functions, each satisfying at least the geometrical boundary conditions of the plate. The unknown 

coefficients of the combination can be obtained from the minimization of the energy functional 

of the system. Convergence of the exact solution is guaranteed if the trial functions are linearly 

independent and form a mathematically complete set. In the use of the Trigonometric Ritz 

method for general vibration analysis of rectangular Kirchhoff plates, Lorenzo predicted the 

natural flexural frequencies of plates using in-plane loads, elastically restrained edges, elastic 

concentrated masses, intermediate line and point supports. 

 

Wang &Wang (2008) developed the transverse free vibration of viscoelastic rectangular thin 

plates with linearly varying thickness and multiply all-over part-through cracks using the 

differential quadrature method. Based on Mindlin plate theory (MPT), a set of exact close-form 

characteristic equations incorporating shear deformation and rotary inertia was proposed by 

Hosseini – Hashemi, Heydar and Hossein (2010) to analyze free vibration problem of moderate 

thick rectangular places with an arbitrary number of all-over part-through cracks. 

 

Huang & Hung (2011) examined the vibration suppression of a simply supported plate under a 

harmonic force at its center by utilizing an active dynamic absorber. The absorber consists of two 
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piezo patches bonded to the top and bottom surfaces of the plate and proper electric circuits. One 

patch is acting as the sensor to sense the velocity information while the other one acts as an 

actuator. Their results revealed this active absorber could effectively reduce the plate vibration 

for both controlled modes and the uncontrolled resonances. 

 

Ali (2013) employed Hamilton’s principle to derive the differential equation governing the 

vibration of single – span thin beams having a number of piezoelectric actuators attached to their 

surfaces. He employed a linear classical optimal control algorithm with displacement – velocity, 

velocity – acceleration feedbacks and three types of external excitation, including a simple 

rectangular impulse, a moving load, and a moving mass. 

 

In rectangular plate supports, Huang, Ma, Sakiyama, Mastsuda and Morita (2007) offered a 

discrete green function method for free vibration analysis of rectangular plates with point 

supports. Altekin (2010) investigated the bending of orthotropic super-elliptical plates on 

intermediate point supports. The Ritz method was used and the total potential energy functional 

was modified by introducing the Lagrange multipliers to improve the accuracy of the stress 

resultants. 

 

Predicting the dynamic performance of continuous systems under moving loads, Rofooei and 

Nikkhoo (2009) proposed a classical closed-loop control algorithm to suppress the vibration of a 

simply supported rectangular plate excited by a moving mass via a number of bounded active 

piezoelectric patches. In 2012 they also scrutinized the inertial effects and the trajectory of the 

moving load on the dynamic response of a simply – supported edge thin rectangular plate. 
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Zarfam, Khaloo and Nikkhoo (2013) performed an investigation on the vibration of a Euler-

Bernoulli beam traversed by a moving mass accompanied with horizontal support excitation. The 

analytical solution to the dynamic response of a circular thin plate carrying a moving load was 

obtained by Uzal and Sakman (2010) by disregarding the load inertia. 

 

Vaseghi, Amiri, Nikkhoo, Davoodi and Ebrahimzadeh (2013) provided a semi-analytical 

simulation of a shear deformable plate vibration due to traveling inertial loads considering a 

general load distribution pattern and plate boundary condition. 

 

Ali and Nikkhoo (2013) determined the resonance of a two-lane slab-type bridge caused by the 

traveling vehicles by using eigenfunction expansion method. A single-span rectangular plate 

with SFSF (F: free edge), (S: simply supported) boundary condition is considered to simulate the 

bridge deck. The spacing of the traversing mass is focused to detect the maximum DAF 

(dynamic amplification factor) of the plate. 

 

Li, Iu and Kou (2008) studied the free vibration of rectangular sandwich plates with functionally 

graded cores and functionally graded (FG) plates in a thermal environment based on the three-

dimensional linear theory of elasticity. They expanded the displacements of the plates by 

Chebyshev polynomials and obtained the natural frequencies by using Ritz method. Amini et al. 

(2009) developed a method for three-dimensional free vibration analysis of rectangular FG plates 

resting on an elastic foundation using Chebyshev polynomials and Ritz method.  
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Xing and Liu (2009) calculated the in-plane vibrational frequencies of rectangular plates by 

employing variable separation method and using the Rayleigh quotient variational principle. 

2.3      Methods of Plate Analysis  

There are various methods of analyzing plates in vibration. They are listed as follows: 

2.3.1        Analytical Methods of Plate Analysis  

2.3.1.1     Variational Iteration Method – II 

In recent times, scientists have proposed and applied some analytical methods to nonlinear 

equations, like the vibration behavior of quintic nonlinear in an extensional beam or two-

parameter elastic substrate based on the three mode assumptions which were investigated. The 

parameter expansion method was used to obtain the approximate expressions of nonlinear 

frequency – amplitude relationship for the first, second and third modes of vibrations. According 

to Pakar and Bayat (2012), Hamiltonian approach was applied to the analysis of the nonlinear 

free vibration of a tapered beam. 

 

A new analytical method called the Variational Iteration method – II (VIM – II) for the 

differential equation of the large deformation of a cantilever beam under point load at the free tip 

was applied by Ghaffarzadeh and Nikkar (2013). 

 

The basic concept of one of the analytical methods of vibration called Variational Iteration 

method is highlighted below. 

The general differential equation is as expressed in Equation (2.3) 

 Lu + Nu = g(t)                         (2.3) 

Where L is a linear operator, and N is a nonlinear operator, g(t) an inhomogeneous or forcing 

term. 



 

19 
 

The correct functional for variation iteration method is as expressed in Equation (2.4)  

            dtgNLtUtU
nn uunn  

1

0

~1                                                              (2.4) 

Where   is a general Lagrange multiplier, which can be identified optimally via the variational 

theory, the subscription n denotes the nth approximation, nU
~

 is considered as a restricted 

variation. For linear problems, its exact solution can be obtained by only one iteration step due to 

the fact that the Lagrange multiplier can be exactly identified. In this method, the problems are 

initially approximated with possible unknowns and it can be applied to non-linear problems 

without linearization or small parameters. The approximate solutions obtained by this method 

rapidly converge to the exact solution (Jodeiri and Imani, 2015). 

 
2.3.1.2     Superposition Method 

Superposition method is one of the analytical methods used in determining the natural 

frequencies of vibrating plates. This method was developed by Gorman in 1999. He analyzed 

free vibration of rectangular plates with numerous different types of boundary conditions and 

point supports. This powerful method gives the best values for the natural frequencies of plates 

having various aspect ratios when compared with other computing methods. 

 
In many cases, the results from the superposition method are the benchmarks for the natural 

frequencies because it is very efficient and accurate for a range of geometric shapes. The 

solutions obtained by this method would give an upper bound and lower bound or lower bound 

result depending on whether the boundary conditions of the building are stiffer or more flexible 

than those of the actual system. The superposition method is an analytical-type method of a 
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solution because it is closed form of an infinite series. Its solution always satisfies the governing 

differential equation and all boundary condition (Patiphan, 2015). 

 
Mathematically, the superposition method requires Equation (2.5) to be true. 

    



j

i

iww
1

,,                          (2.5) 

Equation (2.5) is decomposed further to Equation (2.5a) 

  ),()........,(),(, 21  jwwww                                                                            (2.5a) 

Where j is the number of separate problems   and   is the non-dimensional coordinates. 

Each building block   ,1w is solved separately and the solutions are superimposed to obtain 

original plate solution   ,w . 

 

2.3.1.3     Integral Transform Method 

This is another type of analytical method of which its various types have been successfully used 

to solve many kinds of mixed boundary value problems in engineering. 

By the integral transform method, most problems are usually reduced to the final equation form 

of integral equations of a special type depending on the integral transform techniques used and 

some of their solutions have already been provided (Polyanin and Manzhirov, 2008). 

The integral transform applied in the static bending problem of rectangular plates are in the form 

of inhomogeneous Fredholm-type of the second kind as expressed in Equation (2.6) and 

Equation (2.7) 

              

1

0

12121111 ,, pfdrrrpkrrpkp       (2.6) 
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              

1

0

22221212 ,, pfdrrrpkrrpkp                  (2.7) 

where p is an independent variable and 0 < p < 1, r is a dummy variable,  p1  and  p2  are 

the unknown auxiliary functions to be determined and introduced in the Hankel integral 

transform techniques which is related to the unknown constants of integration of plate’s 

differential equation. f1(p) and f2(p) are known functions that involved to the load applied on the 

plate, and k11(p,r) through k22(p,r) are the kernels of integral equation (Thonchangya, 2001). 

 

2.3.2     Approximate Method of Plate Analysis 

2.3.2.1     Rayleigh-Ritz Method 

According to Leissa (2005), Rayleigh-Ritz method is an approximate method that makes use of 

the energy concept by determining the maximum strain energy and maximum kinetic energy of 

the systems and then, minimizing these energy terms to obtain the condition of equilibrium 

equations. An inherent advantage of this method is that no need to solve the governing 

differential equation, only the suitable series of functions are required to be chosen in satisfying 

exactly the prescribed geometric boundary conditions of the problem. 

 

According to Thongperm, Patiphan, Jakarin and Yos (2015), Rayleigh method was first 

introduced by Lord Raleigh in 1877 for solving the vibration problems to obtain the fundamental 

natural frequency of continuum systems by assuming the mode shape and setting the maximum 

values of potential and kinetic energy in a cycle of motion equal to each other. In 1908, Ritz 

described his method for solving the boundary value problems and the eigenvalue problems to 

determine the frequencies and their corresponding mode shapes by choosing multiple admissible 
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displacement functions and minimizing a functional involving both potential and kinetic 

energies. 

 
The rayleigh-ritz method can be illustrated in Equation (2.8) using the governing biharmonic 

differential equation for the static bending problem of isotropic rectangular thin plates with 

uniform thickness(h) in terms of deflection W(x,y) and subject to a distributed load Q(x,y). 
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Where D is the plate rigidity, E and υ areYoung’s modulus and Poisson’s ratio of the plate, 

respectively. 

 
The strain energy of plate is expressed as shown in Equation (2.10) 
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Where A is the total area of the plate and 
2  is the Laplacian operator. 

The work (W) that produced by the external load is expressed in Equation (2.11) 

      
A

dxdyyxWyxQ
D

W ,,
1

.                                                                (2.11) 

The total potential energy WU  .                                                                                   (2.11a) 

For free vibration of plates, the kinetic energy (T) is as given in Equation (2.12) 

    
A

dxdyyxW
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T
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Where p is the density of mass per unit area of the plate and   is the circular frequency of plate 

vibration. Rayleigh-Ritz method applied the deflection function W(x,y) is terms of admissible 

function 
ji (x,y) satisfying boundary conditions of the plate as expressed in Equation (2.13) 

    
 


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ijijyx yxaW
1 1

, ,            (2.13) 

where I,J are the highest integer numbers to be used in approximation of W(x,y), aaij is defined to 

be the adjustable arbitrary coefficients, and the function 
ji (x,y) may assume to be the algebraic 

polynomials or trigonometric functions satisfying essential (geometric) boundary conditions i.e. 

(slope or deflection) of the plate. 

 

Rayleigh-Ritz method always provides upper bound solutions for vibration frequencies, and the 

upper bound solutions will come to the exact solution as the number of admissible functions is 

sufficiently large and if the used admissible functions are from a mathematically complete set of 

functions. 

 Rayleigh’s principle says that for an unknown system, in steady state, the maximum kinetic 

energy during free vibration must be equal to the maximum potential energy, which in case of 

elastic bodies is predominately the strain energy evolved (Amitabha, 2015). 

 

2.3.2.2    Galerkin’s Method 

Galerkin’s method is a variation of the method of weighted residual which provides a very 

powerful approximate solution procedure that is applicable to a wide variety of problems. In this 

method of weighted residual, the weighing functions are chosen to be identical to the trial 

functions. The usual way of obtaining the solution of a system for an extreme condition is to 

solve the differential equation with corresponding boundary conditions and since such a solution 
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is not possible except in very simple cases, we resort to approximate methods such as the 

Galerkin’s method for approximate solutions to the problem (Njoku, 2013). 

 
The functional presented by Galerkin is as given in Equation (2.14) by Ezeh et al. (2013)  

      0,   dxdyyxfFWL i
A

N          (2.14) 

Where L indicates either a linear or nonlinear differential operator, W is the displacement 

function and fi(x,y) is the linearly independent co-ordinate functions called trial functions, where 

i tends from 1 to n, which depends on the mode of vibration. L(WN) is equal to 4

wD  and F is the 

inertia force. 
 2

3

112 


Eh
D  and 4  is the biharmonic differential operator and w is 

displacement. 

 

This method is an energy approach that sums up all the work (strain energy and potential energy 

or external work) on the continuum to be equal to total potential energy. It seeks to minimize the 

total potential energy functional in order to get the stability matrix. The accuracy of the solution 

is dependent on the accuracy of the approximate deflection function called the shape function 

(Ezeh et al., 2014). 

 
On the vibration of a plate, Galerkin formulated an equation for free vibration of thin plate in 

non-tribal form as expressed in Equation (2.15) 

   GdxdyWmwWD
A

 
24

.        (2.15) 

(Ventsel & Krauthammer, 2001) 
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 w is evaluated and the fundamental frequency of the vibrating plate is obtained. The use of this 

method can be recommended when computers are not available, but its computation can be 

lengthy, and the accuracy of this method depends on the selected shape function. 

 

 

2.3.3 Numerical Method of Plate Analysis  

 According to Oxford dictionary by John (2004), the numerical method is a complete and 

unambiguous set of procedures for a problem, together with computable error estimates. 

Simple cases in plate structures with a limited set of boundary conditions and geometries results 

from the analysis are readily available. With the advent of fast computers and various efficient 

numerical methods, big amount of research done for getting better accuracy in the results evolve. 

Numerical methods offer a reasonable and accepted solution but with complex shapes of plate 

sometimes lead to inaccuracies and more computing time (Chakraverty, 2009). 

Different numerical methods as it applied to plate are discussed below. 

 
2.3.3.1    Finite Difference Method 

Finite difference method is a numerical method based on the mathematical discretization of 

differential equations, which the finite difference equations are translated into algebraic. By 

using this method, a continuous process is studied in a finite number of sufficiently small 

intervals. In these small intervals, the function is approximated by approximate expressions. In 

each elementary interval is the integration, with the results of integration in the previous interval, 

are taken as initial for the next time interval (Dolicanin, Nikolic and Dolicanin, 2010). 
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The function f(x) is continuous in the interval divided into equal divisions  hx  . The first 

derivative of ‘f ‘ at x is as shown in Equation (2.16)  and the first finite difference is as shown in 

Equation (2.17) respectively. 

            
h

ff x 2
|1                                              (2.16) 

    
2

|
hx

fhxfF x


 . (First finite difference).      (2.17) 

 
In applying ordinary finite difference method, the derivatives in the governing plate differential 

equation are replaced by different quantities at some selected point and plate differential 

equation has been transformed into a set of algebraic equations. The convergence to the exact 

solution of plate bending problem with classical finite difference method is slow due to the errors 

used in deriving finite difference expressions, the approximation of boundary conditions and use 

of coarse load averaging rules (Ali, 2011). 

 
By the application of the boundary conditions e.g. (SSSS and CCCC plates), ordinary finite 

difference method can be used to obtain solutions for the pure bending analysis of thin 

rectangular flat plates carrying uniformly distributed load. Using the governing differential 

equation for deflection of thin plates which is shown in Equation (2.18). 
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Where W = deflection, x, and y are plate coordinates 

Po = applied uniformly distributed static load 

D = flexural rigidity of the plate 
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E, v, and h are Young’s modulus, Poisson’s ratio, and the thickness of the plate respectively; a 

pattern for the derived coefficients is formed. The pattern for the derived coefficients and pattern 

for the governing equation are applied at each of the internal nodes with the appropriate 

boundary conditions to generate the required matrix equation which the deflections and moments 

are determined (Ezeh, Ibearugbulem and Onyechere, 2013). 

 
According to Ezeh, Ibearugbulem and Onyechere (2013), an ordinary finite difference was used 

to obtain solutions for the free vibration of thin rectangular flat plates carrying uniformly 

distribution load. A free harmonic vibration of a thin plate with constant thickness h, governed 

by differential equation was given by (Jiu, Liu and Chen., 2007) as expressed in Equation (2.19). 

     0,
2

,

4  yxW
D

ph
W yx
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          (2.19) 

Where 224   is called the biharmonic differential operator. 

ω is the natural circular frequency for the vibrating plate given in rad/sec. 

p is mass density of the plate. 

h is the thickness of the plate. 

 

Considering the boundary conditions and using the central difference, the ordinary finite 

difference for the differentials is formulated. The ordinary finite-difference and patterns derived 

were used to replace the derivatives in the governing equation and applied at each of the internal 

nodes noting the boundary conditions to generate the required eigenvalue equation. 

 
The finite difference method is relatively easy to program, fast enough to analyze and also seems 

to be more convenient for uniform structures such as plate system. The main drawback of finite 
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difference method is that it is not suitable for problems with awkward and irregular geometries 

(Wu, Shu, Xiang and Wang., 2010). 

 
Furthermore, since it is difficult to vary the size of the different cell in particular regions, it is not 

suitable for problems with rapidly changing variables such as stress concentration problems. 

 

2.3.3.2    Boundary Element Method  

Boundary element method is a numerical/computational method that has emerged as a powerful 

alternative to finite elements particularly in cases where better accuracy is required due to 

problems such as stress concentration or where domain extends to infinity. The most important 

feature of boundary elements is that the methodology of formulating boundary values problems 

as boundary integral equations describes problems only by equations with known and unknown 

boundary states. Hence, it only requires discretization of the surface rather than the volume. The 

necessary discretization effort is mostly much smaller and meshes can easily be generated and 

design changes do not require a complete remeshing. 

 
The Boundary Element Method is especially advantageous in the case of problems with infinite 

or semi-infinite domains, although only the finite surface of the infinite domain has to be 

discretized, the solution at any arbitrary point of the domain can be found after determining the 

unknown boundary data (Heinz, 2010). 

 

According to Michal and Tomasz (2007), the most popular approach to Boundary Element 

method was proposed by Benzine in which, the forces at the internal supports are treated as 

unknown variables. The second approach was proposed by Rashed in the application of a 
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coupled Boundary Element Method – flexibility force method in bending analysis of plates with 

internal supports. 

 
Advantages of the Boundary Element Method 

The advantages of Boundary Element Method are as follows: 

i. Less data preparation time. 

ii. Stresses are accurate because no further approximation is imposed on the solution at 

interior points. 

iii. Less computer time and storage. 

iv. Less unwanted information. 

 
 

Disadvantages of the Boundary Element Method 

The disadvantages of Boundary Element Method are listed below: 

i. The mathematics used in Boundary Element formulation may seem unfamiliar to 

engineers. 

ii. In non-linear material problems, the interior must be modeled. 

iii. The solution matrix resulting from the Boundary Element formulation is unsymmetric 

and fully populated with no zero coefficients whereas finite element solution matrices are 

usually much larger but sparsely populated. 

iv. Poor for thin structures (shell) three-dimensional analyses. 
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2.4 Finite Element Analysis of Plates 

 
2.4.1 Finite Element Method 

The finite element method is a general discretization method for the solution of partial derivative 

differential equations, and it is at present the most common discretization method.  

Its success is due to the possibility of using it for a wide variety of problems, but above all to the 

availability of computing machines of ever-increasing power. The method yield usually models 

with a large number of degrees of freedom. The ordinary differential equations obtained are 

easily implemented in general-purpose codes for digital computers. 

 
The Finite Element Method (FEM) is based on the subdivision of the structure into finite 

elements where a continuum is divided into small regions called elements, interconnected at 

selected nodes. The deformation of each element is expressed by interpolating polynomials. The 

coefficient of this polynomials is defined in terms of the element nodal degree of freedom (DOF) 

that describe the displacements and slopes of selected nodes on the element (Nikolas, 2014). 

 

FEM converts the set of governing differential equations for a problem into a set of an equation 

in the form expressed in Equation (2.20). 

  )(

...

tFKxxCx                                  (2.20) 

 
Vector x represents nodal displacements, and the dot indicates the first time derivative. M, C & 

K are mass, damping and stiffness matrices, respectively. )(tF  is the vector of active nodal forces. 

Finite element models and MATLAB of complex mechanical systems can be constructed in 

many engineering programs. 
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It can be used to analyze systems by defining their systems and the inputs. These programs 

develop the mathematical model of the systems and performed their solutions. These 

mathematical models could be extracted from the finite element programs and then it can be used 

with other control programs such as MATLAB to solve closed-loop problems. By the MATLAB 

directly into the FE programs, the closed loop control problems with complex structures can be 

analyzed more easily. The FE models of smart structures such as beam and rectangular plate are 

constructed by MATLAB. Closed loop- FE simulations of these smart structures are studied with 

the integrated procedure to reduce vibration amplitudes (Kapil, 2012). 

 

Steps Used in the Application of FEM (Szilard, 2004). 

The following steps were used in Finite Element Method for analyzing structures: 

(i) Discretization of the continuum, 

(ii) Selection of suitable shape functions, 

(iii) Element formulation. 

(iv) Treatment of the boundary conditions and loads. 

(v) Assembly of the discretized system. 

(vi) A solution of the resulting system of equations. 

(vii)  Computation of stress resultants  

 
 
2.4.2 Finite Element Method Historical Review 

According to Nikolaos (2014), the principles of the Finite Element Method were proposed by 

Ritz in 1909. Galerkin, a Russian mathematician further developed this method. As a result of 

the absence of computers, the development of Finite Element Method was delayed. 
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Another German Mathematician Courant in 1943 solved the torsion problem using an 

assemblage of triangular elements and the principle of Minimum Potential Energy, which he 

named Rayleigh-Ritz Method. In 1955, Greek J.H. Argyris wrote a paper on ‘Energy theorems 

and structural analysis’, introducing the principles of finite elements. The stiffness matrices for 

beams and other elements were derived by Turner, Clough Martin, and Topp in 1956. In 1967, 

the first book on Finite Elements was written by Zienkiewicz and Chung. 

2.4.3 Recent Analysis of Plates Using Finite Element Method 

Ramu and Mohanty (2012) used the Kirchhoff plate theory to study the free Vibration Analysis 

of Rectangular plate using Finite Element Method. The matrixes formed are used to calculate the 

natural frequencies of a rectangular plate by solving the eigenvalue problem. The calculated 

natural frequencies using FEM were compared with those obtained from exact Levy type 

solution which gave a close result. 

 

Ugurlu, Kutlu, Ergin and Omurtag (2008) investigated the effects of elastic foundation and fluid 

on the dynamic response characteristic of rectangular Kirchhoff plates using a mixed-type finite 

element formulation. 

 
Phadikar and Pradhan (2010) presented a finite element on Eringen non-classical elasticity 

theory. In 2012, Pradhan developed a finite element formulation for nonlocal elastic Euler-

Bernoulli beam theory and Timoshenko beam theory. 

 

 Nguyen-Xuan, Rabezuk, Nguyen-Thanh, Nguyen-Thoi and Bordas (2010) presented a 

formulation of the Node-based smoothed finite element method (NS-FEM) for Reissner-Mindlin 

plates using 3-node triangular elements. The discrete weak form of the NS-FEM is obtained 
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based on the strain smoothing technique over smoothing domains associated with the nodes of 

elements. 

 
Lin and Nien (2007) discussed the adaptive modeling and shape control of laminate plates with 

Piezoelectric Actuators. A finite element formulation was developed for dynamics and static 

response of laminated plates. Paquin and St. Amanty (2010) studied the effect of a variable 

thickness beam harvester on its electromagnetic performance. Rayleigh-Ritz approximations 

were used to develop a semi-analytical mechanical model. Finite element technique was used to 

validate the model and numerical simulations were then performed to find the optimum for a 

given maximal strain across the piezoelectric elements for different beam slope angles. 

 
Gergely, Laszio, Gyorgy, and Laszio, D. (2012) analyzed the laminated structural glass plates 

with Polyvinyl butyral (PVB) interlayer using finite element method. Their present study aimed 

at developing a numerical model verified by experimental results and to examine the elastic 

mechanical behavior of structural glass laminated with PVB film. 

 

Limitation of FEM 

The limitations of Finite Element Method are: 

i. It requires the use of powerful computers of considerable speed and storage capacity. 

ii. It is difficult to ascertain the accuracy of numerical results when large structural systems 

are analyzed. 

iii. The method is poorly adapted to a solution of singular problems e.g. plates and shells 

with cracks, corner points, discontinuity internal actions and problems for unbounded 

domains. 
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According to Neffati and Abobaker (2012). The governing equation that describes the flexural 

vibration of thin plates subjected to transverse loading, based on classical plate theory, is as 

expressed in Equation (2.21).  
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Where w(x,y,t), is the out of plane motion  in positive z- direction, pz is the exciting load per unit 

area, E, h, v and p(x,y), are the modulus of elasticity, plate thickness, Poisson’s ratio, and density 

respectively. D is the flexural rigidity which is shown in Equation (2.21a).  

 
 2

3

112 


Eh
D                                                                                                             (2.21a) 

The governing equation of a vibrating thin plate above is a fourth-order partial differential 

equation which requires the continuity of both deflection and slope with respect to both x- and y- 

directions, namely w, Ɵ and ϕ. At least three degrees of freedom are required at each node of the 

selected element to get a unique solution. The finite element equation can now be expressed in 

Equation (2.22) as: 
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2.5 MATLAB as Software for Analysis 

MATLAB is interactive software which has been used recently in various areas of Engineering. 

One attractive aspect of MATLAB is that is relatively easy to learn. It is written on an intuitive 

basis and it does not require in-depth knowledge of operational principle of computer 

programming like compiling and linking most of the other programming languages. 
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           The power of MATLAB is represented by the length and simplicity of the code. For 

example, one page of MATLAB code may be equivalent to many pages of other computer 

source codes. The numerical calculation in MATLAB uses collections of well written 

scientific/mathematical subroutines such as LINPACK and EISPACK. MATLAB provides a 

Graphical user interface (GUI) as well as three-dimensional graphical animation (Young, 1997). 

          It is a software tool with powerful computational and graphics presentation capabilities 

widely used in education and research. It is valuable for teaching structural analysis; in 

particular, modern matrix procedures like the direct stiffness and finite element methods. The 

popularity of MATLAB in teaching analysis in structural engineering is due to its ease of use 

through a variety of built-in functions well suited for structural analysis. The main objective of 

working with MATLAB is to appreciate the principles and concepts of structural analysis and 

clarity of their formulation (Ansgar, 2009).  

            The great advantage of MATLAB as an interactive system is that programs can be tested 

and debugged quickly, allowing the user to concentrate more on the principles behind the 

program and less on programming itself. Since there is no need to compile, link and execute after 

each correction, MATLAB programs can be developed in much shorter time than equivalent 

FORTRAN or C programs. Other advantages of MATLAB include: 

i. There is extensive graphics support that follows the results of computations to be plotted 

with a few statements. 

ii. All numerical objects are treated as double-precision arrays, thus there is no need to 

declare types and carry out type conversions (Jaan, 2005). 
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CHAPTER THREE 

METHODOLOGY  

3.1 Formulation of the General Flexural Element Stiffness Matrix of Thin Rectangular 

Plate. 

 

In the formulation of the general element flexural stiffness matrix of a rectangular thin plate, the 

following general plate assumptions governed by the Kirchoff hypotheses were made.  

i. The deflection (w) of the mid-surface is small when compared with the thickness of the plate. 

ii. The mid-surface of the plate remains unrestrained before, during or after bending. 

iii. A cross section that is initially straight before bending shall remain straight after bending. 

iv. The stress normal to xy plane
2  is assumed to be zero. 

Based on the above assumptions the Equation of plate that delineates the flexural vibration of 

thin isotropic rectangular plate and was selected as expressed in Equation (3.1). 

 

Where w is the displacement in positive Z- direction 

m  is the mass per unit area of the plate 

  is the fundamental natural frequency of the plate 

D is the flexural rigidity expressed in Equation (3.1a) as 

3

212(1 )

Eh
D





                                                                                                                    (3.1a) 

E = Modulus of elasticity 

h = Plate thickness 

4 4 4
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υ = poison’s ratio 

For a plane continuum the governing differential equation for total strain energy for plate in 

vibration is given as; 

Π =    
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Let’s define ‘w’ as the deflection equation. 

 w =  N                                                                                                                                  (3.3) 

Where, w  = deflection of plate                                                                     

        N  = deflection shape function                                                            

           = coefficients of the displacements (deflection and rotation)    

Let  iw  = deflection and rotation at the nodes of the plate. 

       iN = nodal value displacement profile 

 iw =  iN                                                                                                                                (3.4) 

Where   iN  is a square matrix 

Re-arranging Equation (3.4) and making   subject of the Equation, this yield 

Equation (3.5). 

  =  TiN 1  iw                                                                                                                          (3.5) 

Substituting Equation (3.5) into (3.3) yields Equation (3.6) 
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By transforming Equation (3.2); 
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Substituting Equation (3.7) into Equation (3.2), gives Equation (3.8) 
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                                                (3.8) 

Equation (3.8) is divided into two sections “A”and “B” such that section A comprises of 

Equation (3.8a) and section B is made up Equation (3.8b) as expressed below. 
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Substituting Equation (3.6) into section A and B of Equation (3.8), yields Equation (3.9) 
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By expanding section, A of Equation (3.9), Equations (3.9i to 3.9vi) were obtained; 
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And 
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Also by expanding section B of Equation (3.9), Equations (3.9vii to 3.9viii) were obtained; 
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Now, bringing out  TiN 1
and  Tiw which are constants and minimizing Equations 

(3.9ii),(3.9iv),(3.9vi) and (3.9viii) by differenciating with respect to  iw  yields Equation (3.10); 
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Equation (3.10) is called the general flexural element stiffness matrix of a thin rectangular plate. 

By introducing non-dimensional parameter R and Q  

Let 
b

y
Qand

a

x
R                                                                                                            (3.11)                                          

QbyandRax                                                                                                                (3.11a) 

Note dx=adR, dy=bdQ 

Let abthen
a

b
                                                                                                           (3.12)   

Recall Equation (3.7) and Equation (3.9). 

By solving Equation (3.9) and substituting Equations (3.11a) yields Equation (3.13) 
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Bringing out a and b terms in the bracket of Equation (3.13) yield Equation (3.13a) 
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         

   

   
2

2 1

2 40 0

.

2

T

a b id N N wD ab dRdQ

dQ b


  

       
    

     
2 2

1 .
2

T

i i

m
N N w ab dRdQ

          
 

(3.13a) 

Multiplying Equation (3.13a) with 1/ab yields Equation (3.13b) 
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       
2 2

2 1 2 1

2 4 2 20 0 0 02

T T

a b a bi id N N w d N N wD dRdQ dRdQ
D

dR a dRdQ a b

                     
      
         

   

   
2

2 1

2 40 02

T

a b id N N wD dRdQ

dQ b


  

       
    

     
2 2

1

2

T

i i

m
N N w dRdQ

          
 

           (3.13b) 

Substituting Equation (3.12) into Equation (3.13b) yield Equation (3.13c) 

       
2 2

2 1 2 1

4 2 4 20 0 0 02

T T

a b a bi id N N w d N N wD D
dRdQ dRdQ

a dR a dRdQ

                     
      
         

   
 

   
2

2 1

4 4 20 02

T

a b id N N wD
dRdQ

a dQ


  

       
    

     
2 2

1

2

T

i i

m
N N w dRdQ

          
 

       (3.13c) 

Expanding Equation (3.13c) using the same process for Equation (3.9i) to Equation (3.9viii) 

yields Equation (3.13d) 

     
1 1 '' ''1 1

4 0 0
.

2

T T

i i i
R

D
N N N dRdQ w N

a

              

             
1 1 '' ''1 1

4 2 0 0
.

T T

i i i
RQ

D
N N N dRdQ w N

a 

             

           
1 1 '' ''1 1

4 4 0 0
.

2

T T

i i i
Q

D
N N N dRdQ w N

a 

             

              
2

1 1.
2

T T

i i i

m
N N N dRdQ w N

                                             (3.13d) 

 Equation (3.13d) is called the general flexural element stiffness matrix of thin rectangular plate 

for non- dimensional coordinates.                                                                                 
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 Figure 3.1 shows the Paschal triangular shape function of a rectangular plate element in terms of 

non-dimensional parameter.                                1 

 

R Q 

 

R2 RQ Q2 

 

R3 R2Q RQ2 Q3 

 

R4 R3Q R2Q2 RQ3 Q4 

 

 Figure 3.1                           R5 R4Q R3Q2  R2Q3  RQ4  Q5 

The enclosed section of the pascal triangle is the area of concentration for the deflection. 

It should be noted that the shape function in terms of non dimentional parameter is expressed in a 

Polynomial fuction and the parameters expressed in the Pascal triangle are the coefficients of the 

Polynomial Equation of deflection. 

The figure 3.2 shows a sample of finite element mesh of a plate simply supported on opposite 

short edge. The plate is descritized into 49 elements and has 48 nodes. 

 

 

 

 

 

 

Figure 3.2 A finite element mesh of a plate simply supported on opposite short edge 
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The figure 3.3 represents a plate model that shows three deformable quantities acting on it. The 

plate contains in it 12 degrees of freedom which must be satisfied under the application of 

flexural load. Each node on the plate can be numbered in anti-clockwise setting and each node 

bears 3 degrees of freedom i.e. deflection, rotation about the vertical direction and rotation about 

the horizontal direction. The solution of these displacements can be obtained by the use of the 

general flexural element stiffness matrix of a thin rectangular plate derived in equation (3.13d).  

                                                 
Q  

 

 

 

 

 

Figure 3.3.  A thin plate with 12 degrees of freedom 

Where: 

w  = deflection of the plate at the node. 

 R = Rotation at the node about R axis 

 Q  = Rotation at the node about Q axis 

a and b are the dimension of the plate along R and Q axis respectively. 

In the determination of the general stiffness matrix of thin plate under free vibration, R andQ are 

the non-dimensional parameter and N is the deflection shape function of which its values are 

deduced from the Pascal triangle. 

    
                              (3.14) 

 

4Q  

4R  

1R
 

1Q  

3R  

3Q  

2R  
2Q  

2w  1w  

4w  3w  

a 

b  

R  
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Recall that a plate with 12 degrees of freedom will result to a 12 x 12 matrix required for the 

solution. That means we still have 12 deformable terms to be used. 

Bringing N , R and Q  together we have; 

    

 iN

















2332322020100

3230222302010

333223221

RQRQRQRQR

QQRQRQRQR

RQQRQRQQRRQRQRQR

Q

R

N



      (3.14a)                                                                                                                              

 

 Note: R2 denotes R2 and Q2 denote Q2. 

The values of R and Q are obtained by differentiating N with respect to R and Q  respectively.  

                                                  
Q

                                  3Q  

 

 

 

                                                                            

                                                           

Figure 3.4.  A thin plate with 12 degrees of freedom and nodal coordinates 

Figure 3.4 is a plate continuum with nodal values. The plate dimensions a and b are assumed to 

be 1 which led to the nodal values. These values are substituted in Equation (3.14a) after 

differentiating the deflection Equation (N) at all the nodes with respect to R and Q respectively. 

At node 1 we have three degrees of freedom which is w1, θR1, θQ1 and coordinate at this node is 

(0,0). When this coordinate value is substituted in Equation (3.14a) it yields Equation (3.14b). 

Ni =   

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

 
 
 
  

                                                         

(3.14b) 

4w 01 4Q  

4R  

1R
 

1Q  

3R  

2R  2Q  

2w  10 1w 00 

00 

3w  11 

1 

1 

R  
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At node 2 the three degrees of freedom are w2, θR2, θQ2 and the nodal values are (1,0). 

Substituting these nodal values in Equation (3.14a) yields Equation (3.14c). 

Ni =   

1 1 0 1 0 0 1 0 0 0 0 0

0 1 0 2 0 0 3 0 0 0 0 0

0 0 1 0 1 0 0 1 0 0 1 0

 
 
 
  

                                                         

(3.14c) 

At node 3 the three degrees of freedom are w3, θR3, θQ3 and the nodal values are (1,1). These 

nodal values are substituted in Equation (3.14a) which yields Equation (3.14d). 

Ni =   

1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 2 1 0 3 2 1 0 3 1

0 0 1 0 1 2 0 1 2 3 1 3

 
 
 
  

                                                         

(3.14d) 

At node 4 the three degrees of freedom are w4, θR4, θQ4 and the coordinate at the node is (0,1). 

Equation (3.14e) is obtained by substituting these values in Equation (3.14a). 

Ni =   

1 0 1 0 0 1 0 0 0 1 0 0

0 1 0 0 1 0 0 0 1 0 0 1

0 0 1 0 0 2 0 0 0 3 0 0

 
 
 
  

                                                         

(3.14e) 

Combining Equations (3.14b) to (3.14e) yields a 12 by 12 square matrix shown in Equation 

(3.15). The application of boundary conditions is done in chapter 4. 

           iN         













































003000200100

100100010010

001000100101

313210210100

130123012010

111111111111

010010010100

000003002010

000001001011

000000000100

000000000010

000000000001

 

 

0,0 

1,0 

1,1 

0,1 

Nodal Values  

of R and Q 

(3.15) 
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      The inverse of matrix in Equation (3.15) is as shown in Equation (3.16); 

 

  
1

iN    

4

4

4

3

3

3

2

2

2

1

1

1

Q

R

w

Q

R

w

Q

R

w

Q

R

w




































































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







102102102102

012012012012

102000000102

103103203203
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000000012012

103000000203

011001101111

000000013023

000000000100

000000000010

000000000001

   (3.16)                                   

 

Equation (3.16) was transposed as shown in Equation (3.17); 
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 T
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








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
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
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












































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101200210100
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222332313001

   (3.17) 

 

The deflection shape function is differentiated with respect to R and Q by considering three 

cases. 
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Case 1: For  R  direction; 

  N  333223221 RQQRQRQQRRQRQRQR        (3.18) 

  













2

2
''

R

N
N

R
 060026002000 RQQR          (3.19) 

Transposing Equation (3.19) yields Equation (3.20); 
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












T

T

R R

N
N

2

2
''

























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

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6
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                                                                                                                      (3.20) 

The matrix multiplication of Equation (3.19) and (3.20) gives Equation (3.21); 

    
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(3.21) 



 

48 
 

Integration of Equation (3.21) yields Equation (3.22);  


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                        (3.22) 

 

Multiplying Equation (3.17) and Equation (3.22) gives Equation (3.23); 
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      (3.23) 
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The stiffness 
RK for case one as shown in Equation (3.24) is obtained by multiplying together 

Equation (3.23) and Equation (3.16); 
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                              (3.24) 

Case 2: For RQ direction. 

  N  333223221 RQQRQRQQRRQRQRQR         
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Transposing Equation (3.25) results to Equation (3.26); 
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                                                                                                                (3.26) 
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The matrix multiplication of Equation (3.25) and Equation (3.26) gives Equation (3.27); 

    

























22

2

22

2
''''

..
QR

N

QR

N
NN

T

RQ

T

RQ
 

 













































492290362600230000

229490263600230000

000000000000

362602440020000

263604240020000

000000000000

000000000000

23230220010000

000000000000

000000000000

000000000000

000000000000

QQRQRQQ

QRRQRRR

QQRQRQQ

RQRRQRR

QRQR
           (3.27) 

By integrating Equation (3.27), Equation (3.28) is obtained;  

























 dRdQ

QR

N

QR

N
T

22

2

22

2

.

 













































8.1105.110010000

18.1015.10010000

000000000000

5.11033333.110010000

15.10133333.10010000

000000000000

000000000000

110110010000

000000000000

000000000000

000000000000

000000000000

                       (3.28) 
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Multiplication of Equation (3.17) and Equation (3.28) yields Equation (3.29); 

   T

iN
1

























 dRdQ

QR

N

QR

N
T

22

2

22

2

.  

























































3.0001667.000000000

02.0001667.00000000

9.09.00110010000

3.0001667.000000000

03.0001667.00000000

9.09.00110010000

2.0001667.000000000

03.0001667.00000000

9.09.00110010000

2.0001667.000000000

02.0001667.00000000

9.09.00110010000

                     (3.29)          

 

The stiffness RQK for case two as shown in Equation (3.30) is obtained by multiplying together 

2, Equation (3.29) and (3.16);           

RQK 2*   T

iN
1

. dRdQ
QR

N

QR

N
T

























 22

2

22

2

. .   
1

iN  





































































2667.002.0267.002.00667.002.0067.002.0

02667.02.00067.02.000667.02.00267.02.0

2.02.08.22.02.08.22.02.08.22.02.08.2

267.002.02667.002.0067.002.00667.002.0

0067.02.002667.02.00267.02.000667.02.0

2.02.08.22.02.08.22.02.08.22.02.08.2

0667.002.0067.002.02667.002.0267.002.0

00667.02.00267.02.002667.02.00067.02.0

2.02.08.22.02.08.22.02.08.22.02.08.2

067.002.00667.002.0267.002.02667.002.0

0267.02.000667.02.00067.02.002667.02.0

2.02.08.22.02.08.22.02.08.22.02.08.2

    (3.30) 

Case 3: For Q direction. 
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  N  333223221 RQQRQRQQRRQRQRQR         

  













2

2
''

Q

N
N

Q
 RQQR 606200200000           (3.31) 

The transpose of Equation (3.31) yields Equation (3.32); 

  













T

T

Q Q

N
N

2

2
''













































RQ

Q

R

6

0

6

2

0

0

2

0

0

0

0

0

                                                                                                                    (3.32) 

The matrix multiplication of Equation (3.31) and Equation (3.32) gives Equation (3.33); 

    

























2

2

2

2
''''

..
Q

N

Q

N
NN

T

Q

T

Q
 

 













































22360236212001200000

000000000000

236023612001200000

2120122400400000

000000000000

000000000000

12012400400000

000000000000

000000000000

000000000000

000000000000

000000000000

QRRQQRRQ

RQQRQQ

QRRQRR

RQQR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

Integrating Equation (3.33) gives Equation (3.34);  

(3.33) 
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























 dRdQ

Q

N

Q

N
T

2

2

2

2

.  

 













































406200300000

000000000000

6012300600000

2033333.100200000

000000000000

000000000000

306200400000

000000000000

000000000000

000000000000

000000000000

000000000000

                                           (3.34) 

Multiplcation of  Equation (3.17) and Equation (3.34) gives Equation (3.35); 

   T

iN
1

























 dRdQ

Q

N

Q

N
T

2

2

2

2

.  

 





















































1033333.000100000

000000000000

103000000000

2036667.000100000

000000000000

203000000000

0006667.000100000

000000000000

203000000000

0003333.000100000

000000000000

103000000000

                   (3.35) 

The stiffness QK for case three i.e. Q axis, as shown in Equation (3.36) is obtained by 

multiplying together Equation (3.35) and Equation (3.16) 
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QK   T

iN
1

. dRdQ
Q

N

Q

N
T

























 2

2

2

2

. .   
1

iN  





























































3333.1026667.0013333.0016667.002

000000000000

204102102204

6667.0013333.1026667.0023333.001

000000000000

102204204102

3333.0016667.0023333.1026667.001

000000000000

102204204102

6667.0023333.0016667.0013333.102

000000000000

204102102204

                   (3.36) 

The general flexural element stiffness matrix for thin rectangular plate is obtained by adding the 

individual stiffness along R , Q  and RQ axis. Summing up Equation (3.24), Equation (3.30) and 

Equation (3.36) gives Equation (3.37);      

 QRQR KKKK  

                                                                                                                                                  





































































6.102.24.008.04.008.06.002.2

06.12.206.02.204.08.004.08.0

2.22.28.108.02.28.48.08.02.128.08.4

4.008.06.102.26.002.24.008.0

06.02.206.12.204.08.004.08.0

8.02.28.42.22.28.102.28.08.48.08.02.1

4.008.06.002.26.102.24.008.0

04.08.004.08.006.12.206.02.2

8.08.02.12.28.08.42.22.28.108.02.28.4

6.002.24.008.04.008.06.102.2

04.08.004.08.006.02.206.12.2

2.28.08.48.08.02.18.02.28.42.22.28.10

            (3.37) 
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3.2 Formulation of Inertia Matrix of a Thin Rectangular Plate 

 
It is clear that the general flexural element stiffness of the thin rectangular plate has been 

formulated. For a plate under free vibration, the inertia work for a flexural plate extracted from 

Equation (3.2) is as expressed in Equation (3.38); 

dxdyw
m

Wki  

1

0

1

0

2
2

2


                                                                                                                          (3.38) 

Appling the non-dimensional parameter shown in Equation (3.11) gives  

Equation (3.39); 

dRdQw
m

Wki  

1

0

1

0

2
2

2


                                                                                                             (3.39) 

Recall from Equation (3.6); 

   1
T

i iw N N w                                                                                                                      (3.6) 

Substituting Equation (3.6) into Equation(3.39) and expanding it gives  
 

Equations (3.40), (3.40a) and (3.40b);  
 

   
1 12 2

1

0 0
2

T

i i i

m
Wk N N w dRdQ

                                                                                   (3.40) 

       
1 12

1 1

0 0
2

T
T

i i i i i

m
Wk N N w N N w dRdQ

                                                   (3.40a) 

       
1 12

1 1

0 0

.
.

2

T T T

i i i i i

m
Wk N w N N R Q N w

 
 

         
 

                                   (3.40b) 

Minimizing Equation (3.40b) by differentiating with respect to  iw  yields Equation (3.41); 
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        1
1

0

1

0

21
...


   i

TT

ii NQRNNmNK                                             (3.41)   

                                                                                                              

Equation (3.41) is called the inertia stiffness matrix of thin rectangular plate. 

It can also be in this form as expressed in Equation (3.42) 

 cii KmK 2.                                                                                                                        (3.42) 

Where  ciK          1
1

0

1

0

1
..


  i

TT

i NQRNNN

                                                                   

(3.43)

  

Recall that Equation (3.13) is the Equation that is used in obtaining the general flexural element 

stiffness matrix which is expressed in Equation (3.37) 

  R RQ QK K K K                                                                                                                 (3.37) 

Where KR , KRQ , KQ are all expressed in the following Equations. 

RK   T

iN
1

. dRdQ
R

N

R

N
T

























 2

2

2

2

. .  
1

iN


                                                                    
(3.24) 

RQK 2*   T

iN
1

. dRdQ
QR

N

QR

N
T

























 22

2

22

2

. . 
1

iN


                                                       (3.30) 

QK   T

iN
1

. dRdQ
Q

N

Q

N
T

























 2

2

2

2

. .   1

iN
                                                                  (3.36) 

Note that in obtaining these stiffness along these directions KR , KRQ , KQ,  these terms 
3

Db

a
, 

,
4

1


 were not applied in the matrix. Therefore, for a complete stiffness Equation these terms 

must be introduced back into the stiffness Equation which yields Equation (3.44). 

 
                                                                              (3.44) 
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The governing differential equation for total strain energy of plate in vibration states that, 

0iK K                                                                                                                           (3.45) 

Where K is expressed in Equation (3.44) and Ki is expressed in Equation (3.42). 

Substituting the values of K and Ki  yields Equation (3.46). 

 2. 0cim K 
                                                                

(3.46)
                      

 

Solving Equation (3.46) yields Equation (3.47). 

                                                                             (3.47) 

The resonating frequency can be obtained as expressed in Equation (3.47).                                                                                   

The numerical formulation of the inertia matrix is done below. 

By multiplying the Transpose of Equation (3.14) and Equation (3.14) yields Equation (3.48) 

    NN
T

 













































62446524334542334323

44264334256332452343

6436542335432433

52345423324432233222

43254233245322342232

3463324562345343

5335432234322322

4224432234322322

3353223452234232

423432233222

324322342232

333223221

QRQRRQQRQRQRRQQRQRRQQRRQ

QRQRQRQRQRQRQRQRQRQRQRQR

RQQRQRQQRQRQRQQRQRQQ

QRQRRQQRQRQRRQQRQRRQQRRQ

QRQRQRQRQRQRQRQRQRQRQRQR

QRQRQRQRQRRQRQRRQRRR

RQQRQRQQRQRQRQQRQRQQ

QRQRRQQRQRQRRQQRQRRQQRRQ

QRQRQRQRQRRQRQRRQRRR

RQQRQRQQRQRQRQQRQRQQ

QRQRRQQRQRRRQQRRRQRR

RQQRQRQQRRQRQRQR

              

(3.48) 
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Integrating Equation (3.48) and substituting the boundary values of R and Q coordinates which is 
assumed to be 1 as shown in Figure 3.1b yields Equation (3.49) 

 

      dRdQNN

T1

0

1

0

 

 
 













































048.0040.0071.0056.0050.0050.0083.0067.0063.0100.0083.0125.0

040.0048.0050.0050.0056.0071.0063.0067.0083.0083.0100.0125.0

071.0050.0143.0083.0067.0063.0167.0100.0083.0200.0125.0250.0

056.0050.0083.0067.0063.0067.0100.0083.0083.0125.0111.0167.0

050.0056.0067.0063.0067.0083.0083.0083.0100.0111.0125.0167.0

050.0071.0063.0067.0083.0143.0083.0100.0167.0125.0200.0250.0

083.0063.0167.0100.0083.0083.0200.0125.0111.0250.0167.0333.0

067.0067.0100.0083.0083.0100.0125.0111.0125.0167.0167.0250.0

063.0083.0083.0083.0100.0167.0111.0125.0200.0167.0250.0333.0

100.0083.0200.0125.0111.0125.0250.0167.0167.0333.0250.0500.0

083.0100.0125.0111.0125.0200.0167.0167.0250.0250.0333.0500.0

125.0125.0250.0167.0167.0250.0333.0250.0333.0500.0500.0000.1

 

 

(3.49) 
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Multiplication of inverse of Equation (3.14) and Equation (3.49) yields Equation (3.50) 

  1
N       dRdQNN

T1

0

1

0

 

 





















































00397.000250.001190.000556.000417.000417.001667.000833.000694.002500.001389.004167.0

00667.000317.001667.000833.000556.000476.002083.001111.000833.002778.001667.004167.0

03238.001274.010714.004028.002361.001786.013333.005278.003333.017500.007500.025000.0

00794.001000.001190.001111.001250.001667.001667.001667.002083.002500.002778.004167.0

01000.000794.001667.001250.001111.001190.002083.001667.001667.002778.002500.004167.0

07476.007476.010714.009306.009306.010714.013333.012222.013333.017500.017500.025000.0

00317.000667.000476.000556.000833.001667.000833.001111.002083.001667.002778.004167.0

00250.000397.000417.000417.000556.000119.000694.000833.001667.001389.002500.004167.0

01274.003238.001786.002361.004028.010714.003333.005278.013333.007500.017500.025000.0

00159.000167.000476.000278.000278.000417.000833.000556.000694.001667.001389.004167.0

00167.000159.000417.000278.000278.000476.000694.000556.000833.001389.001667.004167.0

00512.000512.001786.000972.000972.001786.003333.002222.003333.007500.007500.025000.0

 
 
 

 
 

 
 
 

 

 

(3.50) 



 

60 
 

Finally, the matrix multiplication of transpose of Equation (3.14) inverse and Equation (3.50) and inverse of Equation (3.14), 

yields the inertia matrix shown in Equation (3.51); 

iK  TN 1     







 
1

0

1

0

dRdQNN
T

  
1

N  

 
 





































































00317.000250.001829.000159.000167.000790.000119.000111.000460.000238.000167.001087.0

00250.000317.001829.000167.000238.001087.000111.000119.000460.000167.000159.000790.0

01829.001829.013706.000790.001087.004865.000460.000460.001563.001087.000790.004865.0

00159.000167.000790.000317.000250.001829.000238.000167.001087.000119.000111.000460.0

00167.000238.001087.000250.000317.001829.000167.000159.000790.000111.000119.000460.0

00790.001087.004865.001829.001829.013706.001087.000790.004865.000460.000460.001563.0

00119.000111.000460.000238.000167.001087.000317.000250.001829.000159.000167.000790.0

00111.000119.000460.000167.000159.000790.000250.000317.001829.000167.000238.001087.0

00460.000460.001563.001087.000790.004865.001829.001829.013706.000790.001087.004865.0

00238.000167.001087.000119.000111.000460.000159.000167.000790.000317.000250.001829.0

00167.000159.000790.000111.000119.000460.000167.000238.001087.000250.000317.001829.0

01087.000790.004865.000460.000460.001563.000790.001087.004865.001829.001829.013706.0

 

(3.51) 
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3.3 Development of Computer Program 

 

A computer program for free vibration analysis of rectangular thin plate was developed using 

Mathematical laboratory program (MATLAB) version 8.1 and model R2013a. The program 

is user friendly, and its interphase is shown in the Appendixes. 

The algorithm for the MATLAB program that used the stiffness matrix and inertia matrix to 

obtain the resonating frequencies of plates of various boundary conditions are listed below. 

 

3.3.1 Algorithm 

i.     Discretize the plate according to grid size i.e. 1,3,5,7etc. 

ii.    Considering the boundary conditions, number all the deflections and rotations in each       

       node starting from the central node conciding with the central deflection of the plate. The 

       boundary conditions and the number of grid size determine the size of matrix formed. 

iii.  Using the deflections and rotations in the Kx, Kxy and Ky which are constants in the 

       general plate model, obtain the stiffness matrix Kx, Kxy, Ky of each element of the 

       discretized plate. 

iv.  Based on the aspect ratio, obtain the general stiffness K of the entire plate by summing up 

      all the individual stiffnesses i.e.    
22221111 yyxxyyxx KKKKKK   etc of each 

      element of the discretized plate. 

v.   Determine the inertia stiffness Ki of each element of discretized plate using the method of 

      posting from the inertia stiffness of a plate model. 

vi. The inertia matrix Ki of the discretized plate is obtained by adding together all the 

       individual inertia matrix of each element. 

vii. The square of the resonating frequency 
2 is obtained by dividing the stiffness matrix K 

       with the inertia matrix Ki. 
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viii. The resonating frequency    which is an eigenvalue problem is obtained by the square 

root of. ciK

K

 

3.3.2 Flow Chart 

The flow chart presented below is based on the algorithm which is used to develop a 

MATLAB program. 

                                                     

 

 

 

 

 

 

 

                                                               

                                                                                                             

                                                                                                              

 

 

 

 

 

 

 

 

 

START 

Read Stiffness 

Matrix Kx 

 

Read Stiffness 

Matrix Kxy 

 

Read Stiffness 

Matrix Ky 

 

Read Formulated 

Stiffness Matrix K 

 
Read Formulated 

Inertia Matrix Ki 

 

Divide plate in odd 

grid of 1,3,5..21 

Even grid size 

2,4,6…. 

 

No 

Yes 

Apply boundary conditions 

CCCC, CCSS, CCCS, CSCS, CSSS 

 

Obtain Stifness Kx1, Kx2, Kx3 etc, Kyx1, Kx2y2, Kx3y3 etc, 

Ky1, Ky2, Ky3 etc and Inertia matrix K1, K2, K3 etc of each 

Plate element. 
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3.4 Comparison of the Present Study and that Obtained from the Previous Methods. 

 

The following are the list of previous methods used in comparing the results of the present 

study. 

1. Free Vibration Analysis of an Alround-Clamped Rectangular Thin Orthotropic Plate 

Using Taylor-Mclaurin Shape function by Onwuka et al. (2016) 

2. Dynamic Analysis of Thin Rectangular Flat Isotropic Plates Using Galerkin’s Method 

by Njoku. (2013) 

3. Vibration of Plates by Chakraverty. (2009) 

4. Vibration of Plates by Leissa. (1969) 

5.  Natural Frequencies of Orthotropic Rectangular Plates Obtained by Iterative 

Reduction of the Partial Differential Equation by Sakata et al. (1996) 

6. Free Vibration Analysis of Rectangular Plates by Gorman. (1982) 

Aspect Ratio α=b/a 

Sum K= (Kx1 +Kx1y1+ Ky1)+ ( Kx2 +Kx2y2+ 

Ky2)+….. Ki= K1+K2 +K3 +….. 

 

 ∏= K + Ki = 0 

Frequency λ= Squr K/Kci 

     END 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1   Results 

 

 

The results obtained from this study are as detailed in this order: 

 

4.1.1   Formulated General Flexural Element Stiffness Matrix 

 

              of Thin Rectangular Plate. 

 

 QRQR KKKK  

                                                                                                                                                  
 





































































6.102.24.008.04.008.06.002.2

06.12.206.02.204.08.004.08.0

2.22.28.108.02.28.48.08.02.128.08.4

4.008.06.102.26.002.24.008.0

06.02.206.12.204.08.004.08.0

8.02.28.42.22.28.102.28.08.48.08.02.1

4.008.06.002.26.102.24.008.0

04.08.004.08.006.12.206.02.2

8.08.02.12.28.08.42.22.28.108.02.28.4

6.002.24.008.04.008.06.102.2

04.08.004.08.006.02.206.12.2

2.28.08.48.08.02.18.02.28.42.22.28.10

     (3.37) 
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4.1.2   Formulated Inertia Matrix of Thin Rectangular Plate.   

 
 

iK  TN 1     







 
1

0

1

0

dRdQNN
T

  
1

N  
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


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






























































00317.000250.001829.000159.000167.000790.000119.000111.000460.000238.000167.001087.0

00250.000317.001829.000167.000238.001087.000111.000119.000460.000167.000159.000790.0

01829.001829.013706.000790.001087.004865.000460.000460.001563.001087.000790.004865.0

00159.000167.000790.000317.000250.001829.000238.000167.001087.000119.000111.000460.0

00167.000238.001087.000250.000317.001829.000167.000159.000790.000111.000119.000460.0

00790.001087.004865.001829.001829.013706.001087.000790.004865.000460.000460.001563.0

00119.000111.000460.000238.000167.001087.000317.000250.001829.000159.000167.000790.0

00111.000119.000460.000167.000159.000790.000250.000317.001829.000167.000238.001087.0

00460.000460.001563.001087.000790.004865.001829.001829.013706.000790.001087.004865.0

00238.000167.001087.000119.000111.000460.000159.000167.000790.000317.000250.001829.0

00167.000159.000790.000111.000119.000460.000167.000238.001087.000250.000317.001829.0

01087.000790.004865.000460.000460.001563.000790.001087.004865.001829.001829.013706.0

(3.51) 
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4.1.3   MATLAB Program 

 

A MATLAB program is written for the various boundary conditions including  

CCCC, CCSS, CSCS, CSSS and CCCS.  

All of them are shown in the Appendixes. 

4.1.4   Numerical Examples 

 

1. Determine the natural frequency   of a rectangular thin plate clamped on all edges when 

the plate is divided into finite elements as shown in Figure 4.1. 

 

 

                                                                          

 

 

 

 

Figure 4.1 CCCC rectangular plate 

2. Determine the natural frequency   of a rectangular thin plate clamped and simply 

supported on adjacent edges when the plate is divided into finite elements as shown in  

      Figure 4.2.  

 

 

 

 

 

 

Figure 4.2 CCSS rectangular plate 
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3. Determine the natural frequency of a rectangular thin plate clamped on two opposite 

edges and simply supported on two opposite edges when the plate is divided into finite 

elements as shown in Figure 4.3. 

 

 

 

 

 

 

 

Figure 4.3 CSCS rectangular plate 

4. Determine the natural frequency    of a rectangular thin plate clamped on one edge and 

simply supported on three edges when the plate is divided into finite elements as shown 

in Figure 4.4. 

 

 

 

 

 

 

 

Figure 4.4 CSSS rectangular plate 
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5. Determine the natural frequency   of a rectangular thin plate clamped on three edges 

and simply supported on one edge when the plate is divided into finite elements as shown 

in Figure 4.5. 

 

 

 

 

 

 

 

 

Figure 4.5 CCCS rectangular plate 

 

The results of the numerical example shown in section 4.14 are highlighted accordingly 

including the aspect ratio (α) which is a factor that depends on the dimensions of the plate 

was used to determine the fundamental natural frequency of plate for different plate 

dimensions. The aspect ratio is in the form of α=b/a. In the program formulated, the natural 

frequency has in it the minimum and maximum values, but our interest was the minimum 

values. It was the square root of the minimum values that gave the natural frequencies of the 

plates. 

 

4.1.4.1   Detailed Grahpical Representation of Results for all Boundary Conditions of  

  Thin Rectangular Plates used in this Study. 

 

The following graphical representation explains the results of the fundamental natural 

frequency of the chosen boundary conditions tabulated. 
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Fig. 4.6 Graphical Representation of Fundamental Natural frequency for CCCC Plates 

                                support conditions of Aspect Ratios of b/a 
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Fig. 4.7   Graphical Representation of Fundamental Natural frequency for CCSS Plates 

                                  support conditions of Aspect Ratios of b/a 
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Aspect Ratio. (α=b/a)  
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Fig. 4.8   Graphical Representation of Fundamental Natural frequency for CSCS Plates  

support conditions of Aspect Ratios of b/a 

Aspect Ratio. (α=b/a)  
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Fig. 4.9   Graphical Representation of Fundamental Natural frequency for CSSS Plates              

                                    support conditions of Aspect Ratios of b/a 

Aspect Ratio.  (α=b/a ) 
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Fig. 4.10   Graphical Representation of Fundamental Natural frequency for CCCS Plates 

                                 support conditions of Aspect Ratios of b/a 

Aspect Ratio.  (α=b/a ) 
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4.2  Discussion of Results  

 

In this section, the natural frequency results for various boundary conditions of thin plates 

obtained using finite element method are discussed in detail.  

 

4.2.1      CCCC Rectangular Thin Plates 

Considering the numerical example one of section 4.14, the program of Appendix A was used 

to determine the resonating frequency   of a rectangular plate starting with a total number 

of three displacements which is equivalent to one grid size. A grid size (n) of increasing odd 

numbers i.e. (n=3), (n=5), (n=7) etc. were used in the program. The results of   which is an 

eigenvalue problem were tabulated as shown in Table 4.1. 

In addition, for verification purpose, the accuracy of the results obtained by the present 

method is compared with those given by other approximate methods. In table 4.1, the aspect 

ratio (α) ranging from 1.0 to 2.0 was used to determine the percentage difference between the 

present study and that of other approximate methods. 

 Looking at table 4.1 critically, it was observed that as the grid size (n) increases horizontally 

across the table the accuracy of the resonating frequency   increases. This is as a result of 

an increase in the discretization of the plate element which is one of the major factors of 

finite element method. Investigating vertically on the table, it was observed that as the aspect 

ratio of the plate increases, the corresponding natural frequency decreases for each grid size. 

For the aspect ratio of 1.0 under the grid size n=3 and n=21, the natural frequencies    are 

34.70339 and 35.92795 respectively while for the aspect ratio of 2.0 the natural 

frequency  are 23.59059 and 24.53527 respectively. 

In table 4.2, the percentage difference between the present study and other scholars for this 

boundary condition were computed. Based on the grid size n=21 the results of the resonating 
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frequency under this grid size was compared with the results of Onwuka et al (2016), Njoku 

(2013) and Liessa (1969). For the present study, the resonating frequency  1  corresponding 

to grid size n=21 and aspect ratio 1.0 was 35.92795, while the results of Onwuka et al (2016), 

Njoku (2013) and Leissa (1969) were 35.967, 35.96736 and 35.9866 respectively. The 

percentage difference between the present study  1  and that of the previous 

studies  2 ,  3 and  4  are 0.108%, 0.110% and 0.163%. Hence, these values show that the 

present study gives a solution that is very close to the previous research work. The graph of 

the fundamental natural frequency   against the aspect ration α shown in Figure 4.6 

explains in detail how close the fundamental natural frequency of this present study for 

CCCC plate is with other approximate methods. 

 

 4.2.2     CCSS Rectangular Thin Plates 

Addressing the problem two of section 4.14 by using MATLAB program formed in 

Appendix B, the natural frequencies   were obtained and tabulated on table 4.3 with respect 

to the aspect ratio. A range of grid size (n=3) and (n=21) was used. 

Table 4.3 shows the resonating frequency    of different grid size (n). Inspecting the table 

horizontally, the accuracy of the result increases with the increase in grid size. The increase 

in the grid size shows the number of discretization the plate element undergoes which is one 

of the importance of finite element method. For the aspect ratio of 1.5, the results of the 

natural frequency    for grid size n=3 and n=21 are 19.27194 and 19.92419 respectively. 

 

Based on the results on Table 4.3, Table 4.4 shows the results of the present study  1 for 

n=21 which was compared with the results of previous studies from Njoku (2013)  2 , Saka 

et al (1996)  3  and Charkraverty (2009)  4 . The results of these previous studies for the 
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aspect ratio of 1.0 are 27.12846, 26.867 and 27.055 while that of the present study is 

27.02033. Also, the percentage differences corresponding to the above results for the present 

study are 0.4001% for Njoku (2013), 0.5675% for Saka et al (1996) and 0.1283% for 

Charkraverty (2009) under the aspect ratio of 1.0. These values show that the natural 

frequency  1  of present study is close to the natural frequency of the previous 

study,  2 ,  3 and  4 . The graph on figure 4.7 presents the clear picture that the 

fundamental natural frequency    obtained in this present study agrees well with other 

approximate solution of Njoku, Saka et al, and Charkraverty under the same aspect ration α. 

 

4.2.3     CSCS Rectangular Thin Plates 

Table 4.5 shows the solution of problem three of section 4.14. The solution of the resonating 

frequency   was obtained with the MATLAB program presented in Appendix C. The 

program solved for a grid size of (n=3) down to (n=21). 

Looking at the grid size n=3 to the grid size of n=21, the natural frequency accuracy increases 

for all aspect ratios i.e. 1.0 to 2.0. This gradual increase in accuracy across table 4.5 shows 

that the higher the discretizations of the plate with respect to the grid size (n), the more 

accurate the result; which is one of the advantages of finite element method. For aspect ratio 

1.3, the results of the natural frequency    for n=3 and n=21 respectively are 19.74984 and 

20.31927. Looking vertically on table 4.5 the value of the natural frequency reduces as the 

aspect ratio of the plate increases. 

Further analysis of table 4.5 is shown in table 4.6. The natural frequency  under grid size 

n=21 is selected from table 4.5 to calculate the percentage differences between the present 

study and the previous approximate methods. The results of the present study 1  for n=21 

were compared with the results of previous studies from Njoku (2013)  2 , Goman 
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(1982)  3 and Charkraverty (2009)  4  and was found to be close. Under aspect ratio of 

1.0, the result of natural frequency 1  for the present study is 22.44284, while the results of 

Njoku (2013)  2 , Goman (1982)  3  and Charkraverty (2009)  4  are 28.95663, 28.95 

and 28.950 respectively. Also, the respective percentage difference between present study 

and previous studies are 0.1437%, 0.1208%, and 0.1208%. The graph of the fundermental 

natural frequency   against the aspect ration α was shown in Figure 4.8 for a more detailed 

result. When studying the graph closely you will notice that the values of the fundamental 

natural frequency obtained from the present study follow the same curve with the one 

obtained from other approximate method of Njoku and Gorman when plotted with the same 

aspect ratio α. This observation shows that the present study obtained an accurate result from 

the finite element method used when compared with other methods. 

 

4.2.4     CSSS Rectangular Thin Plates 

Referring to numerical example, four of section 4.14, the natural frequency   with different 

aspect ratios was obtained using the MATLAB program in Appendix D. The grid size of odd 

numbers with odd number increment was used i.e. n=3, n=5, to n=21 etc. This was tabulated 

in table 4.7.  

Critically looking at table 4.7, it was observed that as the grid size (n) increases horizontally 

across the table the accuracy of the natural frequency   increases. This increment in 

accuracy is as a result of increase in the discretization of the plate element which is one of the 

importance of finite element method. Investigating vertically on the table, it was observed 

that as the aspect ratio of the plate increases, the corresponding natural frequency decreases 

for each grid size. For aspect ratio of 1.2 under grid size n=3 and n=21 the natural 
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frequencies   are 18.64727 and 19.13359 respectively while for the aspect ratio of 2.0, the 

natural frequencies   are 12.88109 and 12.90251 respectively. 

In view of this, from table 4.8, the percentage difference between the present study and other 

scholars for this boundary condition were computed. The natural frequencies of the present 

study were compared with the results of Njoku(2013), Goman (1982) and Charkraverty 

(2009). For the present study, the resonating frequency  1 corresponding to grid size n=21 

and aspect ratio 1.0 was 23.62158, while the results of Njoku(2013)  2 , 

Goman(1982)  3 and Charkraverty (2009)  4 are 23.67982, 23.65 and 23.646 respectively. 

The percentage difference between present study 1 and that of previous 

studies  2 ,  3 and  4  are 0.2465%, 0.1203% and 0.1034%. Hence the value of present 

study shows that is very close to the previous research work. The graph of the fundamental 

natural frequency   against the aspect ration α was shown in Figure 4.9 for a more detailed 

result. 

 

4.2.5     CCCS Rectangular Thin Plates 

The solution of example five of section 4.14 was given on table 4.9. The MATLAB program 

outlined in Appendix E gives the fundamental natural frequency for this boundary condition 

of a thin plate by using different aspect ratios and corresponding grid size (n). 

Table 4.9 shows the natural frequency of different grid size (n) from n=3 to n=21. Looking at 

the table horizontally, the accuracy of the natural frequency for this boundary condition 

increases with increase in grid size. The discretization of the plate element which is 

represented by the grid size shows the importance of finite element method. Also looking 

vertically downwards on table 4.9, the natural frequency of the plate reduces with the 
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increase in the aspect ratio of the plate. For the aspect ratio of 1.0, the results of the natural 

frequency   for grid size n=3 and n=21 are 30.71895 and 31.78051 respectively. 

In view of the results in Table 4.9, Table 4.10 shows the results of the present study 1  for 

n=21 which was compared with the results of previous studies from Njoku(2013)  2   and 

Charkraverty(2009)  3 .  

For the present study, the resonating frequency  1 corresponding to grid size n=21 and 

aspect ratio 1.0 was 31.78051, while the results of Njoku(2013)  2  and Charkraverty 

(2009)  3 are 31.86803 and 31.827respectively. The percentage difference between present 

study 1 and that of previous studies  2 and  3 are 0.2753% and 0.1461%. Hence the 

value of present study shows that is very close to the previous research work. The graph of 

the fundamental natural frequency   against the aspect ration α was shown in Figure 4.10 

for a more detailed result. The graph shows that the result obtained from the present study 

and other approximate methods follow the same curve. From the graph, you will discover that 

the curves are almost on the same pathway because of close values of very small percentage 

difference. Hence the finite element method gives the fundamental natural frequency of a 

plate in free vibration. 
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                    DETAILED RESULT OF VARIOUS BOUNDARY CONDITIONS OF THIN RECTANGULAR PLATES. 

 

Table 4.1 The natural frequency   for different aspect ratio and grid size (n) for CCCC plates. 

Aspect 

ratio 

α = b/a 

Natural 

Frequency

  For 

Grid size   

n = 3 

Natural 

Frequency

  For 

Grid size 

n = 5 

Natural 

Frequency

  For 

Grid size 

n = 7 

Natural 

Frequency

  For 

Grid size 

n = 9 

Natural 

Frequency

  For 

Grid size 

n = 11 

Natural 

Frequenc

y  For    

Grid size 

n = 13 

Natural 

Frequenc

y  For 

Grid size 

n = 15 

Natural 

Frequency

  For 

Grid size 

n = 17 

Natural 

Frequency

  For 

Grid size 

n = 19 

Natural 

Frequency

  For 

Grid size 

n = 21 

1.0 34.70339 35.30331 35.57776 35.71716 35.79633 35.84528 35.87755 35.89989 35.91598 35.92795 

1.1 31.76597 32.31657 32.56836 32.69627 32.76892 32.81384 32.84345 32.86396 32.87872 32.8897 

1.2 29.64798 30.16551 30.40188 30.52199 30.59023 30.63243 30.66025 30.67952 30.6934 30.70371 

1.3 28.08517 28.58056 28.80627 28.92099 28.98619 29.02653 29.05312 29.07154 29.0848 29.09466 

1.4 26.90753 27.38847 27.60671 27.71764 27.78071 27.81974 27.84547 27.8633 27.87613 27.88568 

1.5 26.00278 26.47495 26.68792 26.79613 26.85768 26.89576 26.92088 26.93829 26.95082 26.96014 

1.6 25.29505 25.76289 25.97212 26.07836 26.13879 26.17619 26.20086 26.21795 26.23027 26.23942 

1.7 24.73195 25.19915 25.40577 25.51056 25.57015 25.60704 25.63138 25.64824 25.66039 25.66941 

1.8 24.27661 24.74645 24.95131 25.05502 25.11398 25.15048 25.17455 25.19124 25.20326 25.21219 

1.9 23.9026 24.37815 24.58193 24.68483 24.7433 24.77949 24.80336 24.81991 24.83183 24.84069 

2.0 23.59059 24.0749 24.27817 24.38046 24.43854 24.47449 24.4982 24.51464 24.52648 24.53527 

 

 

 



 

81 
 

Table 4.2    Results of natural frequency    for CCCC plate of present study and the results 

of previous studies with their percentage difference for different aspect ratios. 

Aspect 
ratio 

α = b/a 

Present 
Study 

   1  

For grid 
size n=21 

Onwuka 
et al 

(2016) 

    2  

Njoku 
 (2013) 

      3  

Leissa 
    

(1969) 
       

 4  

Percentage  
Difference 

      For 

 2 & 1  

Percentage  
Difference 

      For 

 3 & 

 1  

Percentage  
Difference 

      For 

 4 & 1  

1.0 35.92795 35.967 35.96736 35.9866   0.108   0.110 0.163 

1.1 32.88970 32.929  32.92891        -   0.119   0.119       - 

1.2 30.70371 30.748 30.7477            -   0.144   0.143       - 

1.3 29.09466 29.146 29.1459            -   0.176   0.176       - 

1.4 27.88568 27.945 27.94509           -   0.213   0.213       - 

1.5 26.96014 27.028  27.0278     27.0000   0.252   0.251 0.148 

1.6 26.23942 26.315 26.31492           -   0.288   0.288       - 

1.7 25.66941 25.752 25.75212           -   0.322   0.322       - 

1.8 25.21219 25.301 25.30138           -   0.352   0.354       - 

1.9 24.84069 24.936 24.93561            -   0.384   0.382       - 

2.0 24.53527 24.635 24.63524     23.7600   0.406   0.407 3.160 
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Table 4.3 The natural frequency   for different aspect ratio and grid size (n) for CCSS plates. 

Aspect 

ratio 
α = b/a 

Natural 

Frequency

  For 

Grid  size   
n = 3 

Natural 

Frequency

  For 

Grid size   
n = 5 

Natural 

Frequency

  For 

Grid size 
    n = 7 

Natural 

Frequency

  For 

Grid size 
    n = 9 

Natural 

Frequency

  For 

Grid size   
n = 11 

Natural 

Frequency

  For    

Grid size 
    n = 13 

Natural 

Frequency

  For 

Grid size 
    n = 15 

Natural 

Frequency

  For 

Grid size 
    n = 17 

Natural 

Frequency

  For 

Grid size 
    n = 19 

Natural 

Frequency

  For 

Grid size 
    n = 21 

1.0 26.20237 26.63259 26.80778 26.89367 26.94168 26.9711 26.99038 27.00369 27.01324 27.02033 

1.1 23.95566 24.35108 24.51207 24.591 24.63512 24.66215 24.67987 24.6921 24.70087 24.70738 

1.2 22.2895 22.66248 22.81424 22.88865 22.93024 22.95573 22.97244 22.98396 22.99223 22.99836 

1.3 21.02467 21.38322 21.52896 21.60042 21.64037 21.66485 21.68089 21.69196 21.6999 21.70579 

1.4 20.04478 20.39426 20.53606 20.60559 20.64446 20.66828 20.6839 20.69467 20.70239 20.70812 

1.5 19.27194 19.61599 19.75524 19.82351 19.86168 19.88507 19.9004 19.91098 19.91856 19.92419 

1.6 18.65261 18.99381 19.13144 19.19888 19.23695 19.2597 19.27485 19.2853 19.2928 19.29835 

1.7 18.14914 18.48938 18.62601 18.69293 18.73034 18.75328 18.76831 18.77867 18.78611 18.79162 

1.8 17.73452 18.07524 18.21131 18.2779 18.31513 18.33795 18.35291 18.36322 18.37062 18.3761 

1.9 17.38896 17.73136 17.86717 17.93358 17.9707 17.99344 18.00835 18.01864 18.02601 18.03148 

2.0 17.09779 17.44289 17.57867 17.64498 17.68203 17.70474 17.71962 17.72989 17.73725 17.74271 
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Table 4.4 Results of natural frequency    for CCSS plate of present study and the results of 

previous studies with their percentage differences for different aspect ratios. 

 

Aspect 
ratio 

α = b/a 

Present 
Study 

   1  

For grid 
size n=21 

Njoku 
 (2013) 

    2  

Sakata      
et al 

 (1996) 

    3  

Chakra- 
verty 

 (2009) 

    4  

Percentage  
Difference 

      For 

 2  

& 1  

Percentage  
Difference 

      For 

 3  & 

 1  

Percentage  
Difference 

      For 

 4  

& 1  

1.0 27.02033 27.12846 26.867 27.055   0.4001  0.5675  0.1283 

1.1 24.70738 24.8076       -       -   0.4056       -       - 

1.2 22.99836 23.09477       -       -   0.4191       -       - 

1.3 21.70579 21.80073       -       -   0.4374       -       - 

1.4 20.70812 20.80073       -       -   0.4472       -       - 

1.5 19.92419 20.01935       -       -   0.4776       -       - 

1.6 19.29835 19.39417       -       -   0.4965       -       - 

1.7 18.79162 18.88809       -       -   0.5134       -       - 

1.8 18.3761 18.47313       -       -   0.5280       -       - 

1.9 18.03148 18.12889       -       -   0.5402       -       - 

2.0 17.74271 17.84034 17.770       -   0.5503  0.5503       - 
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Table 4.5 The natural frequency   for different aspect ratio and grid size (n) for CSCS plates. 

Aspect 

ratio 
α = b/a 

Natural 

Frequency

  For 

Grid  size   
n = 3 

Natural 

Frequency

  For 

Grid size   
n = 5 

Natural 

Frequency

  For 

Grid size 
    n = 7 

Natural 

Frequency

  For 

Grid size 
    n = 9 

Natural 

Frequency

  For 

Grid size   
n = 11 

Natural 

Frequency

  For    

Grid size 
    n = 13 

Natural 

Frequency

  For 

Grid size 
    n = 15 

Natural 

Frequency

  For 

Grid size 
    n = 17 

Natural 

Frequency

  For 

Grid size 
    n = 19 

Natural 

Frequency

  For 

Grid size 
    n = 21 

1.0 28.0212 28.4999 28.68858 28.78036 28.83149 28.86278 28.88327 28.8974 28.90755 28.91507 

1.1 24.46694 24.8644 25.02354 25.10134 25.14479 25.1714 25.18884 25.20087 25.20951 25.21591 

1.2 21.79777 22.13671 22.27474 22.34258 22.38056 22.40385 22.41912 22.42966 22.43723 22.44284 

1.3 19.74984 20.04591 20.16863 20.22929 20.26333 20.28424 20.29796 20.30743 20.31423 20.31927 

1.4 18.14973 18.41399 18.52549 18.58093 18.61211 18.63129 18.64389 18.65259 18.65883 18.66346 

1.5 16.87975 17.12017 17.22338 17.27497 17.30407 17.32199 17.33377 17.34191 17.34775 17.35208 

1.6 15.85781 16.08024 16.17727 16.22603 16.2536 16.27059 16.28177 16.28949 16.29504 16.29915 

1.7 15.02535 15.23412 15.32652 15.37318 15.39962 15.41593 15.42667 15.43409 15.43942 15.44337 

1.8 14.33976 14.53812 14.62704 14.67213 14.69772 14.71354 14.72396 14.73115 14.73633 14.74016 

1.9 13.76946 13.95991 14.04618 14.0901 14.11507 14.13052 14.14069 14.14773 14.15279 14.15653 

2.0 13.29074 13.47518 13.55946 13.60249 13.62700 13.64217 13.65216 13.65908 13.66405 13.66773 
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Table 4.6 Results of natural frequency   for CSCS plates of present study and results of 

previous studies with their percentage difference for different aspect ratios. 

Aspect 
ratio 

α = b/a 

Present 
Study 

   1  

For grid 
size n=21 

Njoku 
 (2013) 

    2  

Goman 
 (1982) 

    3  

Chakra- 
verty 

 (2009) 

    4  

Percentage  
Difference 

      For 

 2  

& 1  

Percentage  
Difference 

      For 

 3  & 

 1  

Percentage  
Difference 

      For 

 4  

& 1  

1.0 28.91507 28.95663 28.95 28.950   0. 1437  0.1208 0.1208 

1.1 25.21591 25.25798       -       -   0.1668       -       - 

1.2 22.44284 22.48099       -       -   0.1699       -       - 

1.3 20.31927 20.35661       -       -   0.1838       -       - 

1.4 18.66346 18.7019       -       -   0.2059       -       - 

1.5 17.35208 17.39274 17.37       -   0.2343  0.1033       - 

1.6 16.29915 16.34263       -       -   0.2667       -       - 

1.7 15.44337 15.48987       -       -   0.3011       -       - 

1.8 14.74016 14.78968       -       -   0.3359       -       - 

1.9 14.15653 14.20892       -       -   0.3701       -       - 

2.0 13.66773 13.72275 13.69       -   0.4025  0.1629       - 
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Table 4.7 The natural frequency   for different aspect ratio and grid size (n) for CSSS plates. 

Aspect 

ratio 
α = b/a 

Natural 

Frequency

  For 

Grid  size   
n = 3 

Natural 

Frequency

  For 

Grid size   
n = 5 

Natural 

Frequency

  For 

Grid size 
    n = 7 

Natural 

Frequency

  For 

Grid size 
    n = 9 

Natural 

Frequency

  For 

Grid size   
n = 11 

Natural 

Frequency

  For    

Grid size 
    n = 13 

Natural 

Frequency

  For 

Grid size 
    n = 15 

Natural 

Frequency

  For 

Grid size 
    n = 17 

Natural 

Frequency

  For 

Grid size 
    n = 19 

Natural 

Frequency

  For 

Grid size 
    n = 21 

1.0 23.00074 23.33312 23.46452 23.52829 23.56376 23.58543 23.59961 23.60938 23.61639 23.62158 

1.1 20.51997 20.80805 20.92285 20.9787 21.0098 21.02882 21.04126 21.04983 21.05598 21.06053 

1.2 18.64727 18.90537 19.00896 19.05948 19.08764 19.10486 19.11614 19.1239 19.12947 19.13359 

1.3 17.20151 17.43921 17.53518 17.58208 17.60825 17.62426 17.63474 17.64197 17.64714 17.65097 

1.4 16.06391 16.28768 16.37848 16.42293 16.44774 16.46293 16.47288 16.47973 16.48464 16.48828 

1.5 15.15394 15.36828 15.45557 15.49836 15.52226 15.5369 15.54649 15.55309 15.55782 15.56132 

1.6 14.41556 14.62358 14.70852 14.7502 14.77349 14.78776 14.79711 14.80354 14.80816 14.81156 

1.7 13.80877 14.0127 14.09608 14.13703 14.15993 14.17396 14.18314 14.18947 14.1940 14.19735 

1.8 13.30448 13.5059 13.58829 13.62877 13.65141 13.66529 13.67437 13.68063 13.68512 13.68843 

1.9 12.88109 13.08117 13.16295 13.20315 13.22564 13.23943 13.24846 13.25467 13.25913 13.26242 

2.0 12.52237 12.72196 12.80342 12.84346 12.86587 12.8796 12.8886 12.89479 12.89923 12.90251 
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Table 4.8 Results of natural frequency   for CSSS plates of present study and results of 

previous studies with their percentage difference for different aspect ratios. 

Aspect 
ratio 

α = b/a 

Present 
Study 

   1  

For grid 
size n=21 

Njoku 
 (2013) 

    2  

Gorman 
 (1982) 

    3  

Chakra- 
verty 

 (2009) 

    4  

Percentage  
Difference 

      For 

 2  

& 1  

Percentage  
Difference 

      For 

 3  & 

 1  

Percentage  
Difference 

      For 

 4  

& 1  

1.0 23.62158 23.67982 23.65 23.646 0.2465 0.1203 0.1034 

1.1 21.06053  21.1211       -       - 0.2876       -       - 

1.2 19.13359 19.19747 19.42       - 0.3388 1.4968       - 

1.3 17.65097 17.7184       -       - 0.3820       -       - 

1.4 16.48828 16.55908       -       - 0.4294       -       - 

1.5 15.56132 15.63509 15.58       - 0.4741 0.1200       - 

1.6 14.81156 14.27555       -       - 3.6188       -       - 

1.7 14.19735 14.27555       -       - 0.5505       -       - 

1.8 13.68843 13.76808       -       - 0.5818       -       - 

1.9 13.26242 13.34306       -       - 0.6080       -       - 

2.0 12.90251 12.98373 12.92       - 0.6295 0.1355       - 
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Table 4.9 The natural frequency   for different aspect ratio and grid size (n) for CCCS plates. 

Aspect 

ratio 
α = b/a 

Natural 

Frequency

  For 

Grid  size   
n = 3 

Natural 

Frequency

  For 

Grid size   
n = 5 

Natural 

Frequency

  For 

Grid size 
    n = 7 

Natural 

Frequency

  For 

Grid size 
    n = 9 

Natural 

Frequency

  For 

Grid size  
 n = 11 

Natural 

Frequency

  For    

Grid size 
    n = 13 

Natural 

Frequency

  For 

Grid size 
    n = 15 

Natural 

Frequency

  For 

Grid size 
    n = 17 

Natural 

Frequency

  For 

Grid size 
    n = 19 

Natural 

Frequency

  For 

Grid size 
    n = 21 

1.0 30.71895 31.26736 31.4972 31.6111 31.67511 31.71445 31.74029 31.75814 31.77098 31.78051 

1.1 27.43187 27.90753 28.10958 28.2101 28.26669 28.3015 28.32437 28.34018 28.35155 28.35999 

1.2 25.008 25.43231 25.61491 25.70612 25.75755 25.78923 25.81005 25.82445 25.8348 25.84248 

1.3 23.18205 23.56964 23.73843 23.82308 23.8709 23.90037 23.91976 23.93317 23.94281 23.94997 

1.4 21.78061 22.1417 22.30058 22.38055 22.4258 22.45371 22.47209 22.4848 22.49394 22.50073 

1.5 20.68695 21.02882 21.18051 21.2571 21.30051 21.32731 21.34496 21.35717 21.36596 21.37248 

1.6 19.82053 20.14852 20.29494 20.36907 20.4113 20.43713 20.45425 20.46611 20.47464 20.48097 

1.7 19.12465 19.44273 19.58527 19.65757 19.69866 19.72406 19.7408 19.75239 19.76073 19.76693 

1.8 18.55863 18.86987 19.00951 19.08046 19.12081 19.14577 19.16223 19.17363 19.18183 19.18792 

1.9 18.0928 18.39961 18.53712 18.60704 18.64683 18.67147 18.68771 18.69869 18.70706 18.71307 

2.0 17.7052 18.00958 18.1455 18.21464 18.25401 18.27839 18.29447 18.30561 18.31363 18.31958 
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Table 4.10 Results of natural frequency   for CCCS plates of present study and results of 

previous studies with their percentage difference for different aspect ratios. 

Aspect ratio 
α = b/a 

Present Study 

   1  

For grid  

size  n=21 

Njoku 
 (2013) 

    2  

Chakra- 
verty 

 (2009) 

    3  

Percentage  
Difference 

      For 

 2  & 1  

Percentage  
Difference 

      For 

 3  & 1  

1.0 31.78051 31.86803 31.827 0.2753  0.1461 

1.1 28.35999 28.43333       - 0.2586       - 

1.2 25.84248 25.90856       - 0.2551       - 

1.3 23.94997 24.01317       - 0.2632       - 

1.4 22.50073 22.56374       - 0.2793       - 

1.5 21.37248 21.43689       - 0.3005       - 

1.6 20.48097 20.54761       - 0.3243       - 

1.7 19.76693 19.83618       - 0.3491       - 

1.8 19.18792 19.25986       - 0.3735       - 

1.9 18.71307 18.78759       - 0.3966       - 

2.0 18.31958 18.39649       - 0.4394       - 
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CHAPTER FIVE 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

 The following conclusions could be drawn based on the results of this study.  

The general flexural element stiffness matrix of a thin rectangular plate with the inertia 

matrix is satisfactory for all the boundary condition used in this study. This means that for 

each chosen boundary condition, the same stiffness matrix formulated can be used to obtain 

the required approximate result. 

The MATLAB program formed for different boundary conditions using finite element 

method is fast, efficient and easy to understand. It is fast because it can perform analysis of 

plate within a short time. Yielding results in a short time with minimal error makes the 

program efficient. 

The finite element method used for the free vibration analysis of rectangular thin plate 

yielded satisfactory approximate fundamental natural frequencies for the plates. 

The fundamental natural frequencies obtained by previous research works that used different 

methods of analysis are very close to those obtained in the present study. That is the 

difference in value of results obtained in this study with other approximate methods are 

negligible. 

 

5.2    Recommendations  

 (i)         It is recommended that the method used in this research in deriving the stiffness 

and inertia matrix of a thin rectangular plate under free vibration should be 

applied to a thick plate subjected to forced vibration. 
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 (ii)        It is recommended that the free vibration analysis and finite element method used 

in this study should be applied to rectangular plates with central cutout, on thin 

circular plates with multiple opening and plates with various shapes like skew, 

elliptical, hexagonal etc. 

(iii)      Other programming languages like Java, FORTRAN, C++, and Python can be 

recommended for future research work on free vibration and forced vibration 

analysis of rectangular plates using finite element method. 

(iv)       Further application of degrees of freedom to 16 deformable terms or more on 

rectangular plates can be recommended for the purpose of accuracy. 

 

5.3 Contribution to Knowledge 

This research work, free vibration of a thin rectangular plate using finite element method 

has contributed to the following knowledge. 

(i)       Sucessfully formulated the General Flexural Element Stiffness Matrix as 

expressed in the Equation (3.13d).  

     
1 1 '' ''1 1

4 0 0
.

2

T T

i i i
R

D
N N N dRdQ w N

a

              

        
1 1 '' ''1 1

4 2 0 0
.

T T

i i i
RQ

D
N N N dRdQ w N

a 

             

         
1 1 '' ''1 1

4 4 0 0
.

2

T T

i i i
Q

D
N N N dRdQ w N

a 

             

                
2

1 1.
2

T T

i i i

m
N N N dRdQ w N

                          (3.13d)                            

and the Inertia Matrix as expressed in Equation (3.41). 
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1
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(ii)       A MATLAB program developed using the stiffness matrix and inertia matrix in 

Appendix A to D in obtaining natural frequencies of thin plate free vibration 

problems.  
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APENDIX A 
 

 
MATLAB Program Formulated for CCCC Boundary Condition 

 

 

%ReDim kx(12, 12), kxy(12, 12), ky(12, 12), k(12, 12), ki(12, 12) 
for x = 1 : 12 
for y = 1 : 12 
k(x, y) = 0; kx(x, y) = 0; kxy(x, y) = 0; ky(x, y) = 0; 
end 
end 
af = input('WHAT IS THE aspect ratio, b/a?'); af = af * 1; 
kx(1, 1) = 4; kx(1, 2) = 2; kx(1, 3) = 0; kx(1, 4) = -4; kx(1, 5) = 2; kx(1, 6) = 0; kx(1, 7) = -2; kx(1, 8) = 1; kx(1, 

9) = 0; kx(1, 10) = 2; kx(1, 11) = 1; kx(1, 12) = 0; 
kx(2, 1) = 2; kx(2, 2) = 1.333333; kx(2, 3) = 0; kx(2, 4) = -2; kx(2, 5) = 0.6666667; kx(2, 6) = 0; kx(2, 7) = -1; 

kx(2, 8) = 0.333333; kx(2, 9) = 0; kx(2, 10) = 1; kx(2, 11) = 0.6666667; kx(2, 12) = 0; 
kx(3, 1) = 0; kx(3, 2) = 0; kx(3, 3) = 0; kx(3, 4) = 0; kx(3, 5) = 0; kx(3, 6) = 0; kx(3, 7) = 0; kx(3, 8) = 0; kx(3, 

9) = 0; kx(3, 10) = 0; kx(3, 11) = 0; kx(3, 12) = 0; 
kx(4, 1) = -4; kx(4, 2) = -2; kx(4, 3) = 0; kx(4, 4) = 4; kx(4, 5) = -2; kx(4, 6) = 0; kx(4, 7) = 2; kx(4, 8) = -1; 

kx(4, 9) = 0; kx(4, 10) = -2; kx(4, 11) = -1; kx(4, 12) = 0; 
kx(5, 1) = 2; kx(5, 2) = 0.6666667; kx(5, 3) = 0; kx(5, 4) = -2; kx(5, 5) = 1.3333333; kx(5, 6) = 0; kx(5, 7) = -1; 

kx(5, 8) = 0.6666667; kx(5, 9) = 0; kx(5, 10) = 1; kx(5, 11) = 0.3333333; kx(5, 12) = 0; 
kx(6, 1) = 0; kx(6, 2) = 0; kx(6, 3) = 0; kx(6, 4) = 0; kx(6, 5) = 0; kx(6, 6) = 0; kx(6, 7) = 0; kx(6, 8) = 0; kx(6, 

9) = 0; kx(6, 10) = 0; kx(6, 11) = 0; kx(6, 12) = 0; 
kx(7, 1) = -2; kx(7, 2) = -1; kx(7, 3) = 0; kx(7, 4) = 2; kx(7, 5) = -1; kx(7, 6) = 0; kx(7, 7) = 4; kx(7, 8) = -2; 

kx(7, 9) = 0; kx(7, 10) = -4; kx(7, 11) = -2; kx(7, 12) = 0; 
kx(8, 1) = 1; kx(8, 2) = 0.3333333; kx(8, 3) = 0; kx(8, 4) = -1; kx(8, 5) = 0.6666667; kx(8, 6) = 0; kx(8, 7) = -2; 

kx(8, 8) = 1.3333333; kx(8, 9) = 0; kx(8, 10) = 2; kx(8, 11) = 0.6666667; kx(8, 12) = 0; 
kx(9, 1) = 0; kx(9, 2) = 0; kx(9, 3) = 0; kx(9, 4) = 0; kx(9, 5) = 0; kx(9, 6) = 0; kx(9, 7) = 0; kx(9, 8) = 0; kx(9, 

9) = 0; kx(9, 10) = 0; kx(9, 11) = 0; kx(9, 12) = 0; 
kx(10, 1) = 2; kx(10, 2) = 1; kx(10, 3) = 0; kx(10, 4) = -2; kx(10, 5) = 1; kx(10, 6) = 0; kx(10, 7) = -4; kx(10, 8) 

= 2; kx(10, 9) = 0; kx(10, 10) = 4; kx(10, 11) = 2; kx(10, 12) = 0; 
kx(11, 1) = 1; kx(11, 2) = 0.6666667; kx(11, 3) = 0; kx(11, 4) = -1; kx(11, 5) = 0.3333333; kx(11, 6) = 0; kx(11, 

7) = -2; kx(11, 8) = 0.6666667; kx(11, 9) = 0; kx(11, 10) = 2; kx(11, 11) = 1.3333333; kx(11, 12) = 0; 
kx(12, 1) = 0; kx(12, 2) = 0; kx(12, 3) = 0; kx(12, 4) = 0; kx(12, 5) = 0; kx(12, 6) = 0; kx(12, 7) = 0; kx(12, 8) = 

0; kx(12, 9) = 0; kx(12, 10) = 0; kx(12, 11) = 0; kx(12, 12) = 0; 
  
  
ky(1, 1) = 4; ky(1, 2) = 0; ky(1, 3) = 2; ky(1, 4) = 2; ky(1, 5) = 0; ky(1, 6) = 1; ky(1, 7) = -2; ky(1, 8) = 0; ky(1, 

9) = 1; ky(1, 10) = -4; ky(1, 11) = 0; ky(1, 12) = 2; 
ky(2, 1) = 0; ky(2, 2) = 0; ky(2, 3) = 0; ky(2, 4) = 0; ky(2, 5) = 0; ky(2, 6) = 0; ky(2, 7) = 0; ky(2, 8) = 0; ky(2, 

9) = 0; ky(2, 10) = 0; ky(2, 11) = 0; ky(2, 12) = 0; 
ky(3, 1) = 2; ky(3, 2) = 0; ky(3, 3) = 1.3333333; ky(3, 4) = 1; ky(3, 5) = 0; ky(3, 6) = 0.6666667; ky(3, 7) = -1; 

ky(3, 8) = 0; ky(3, 9) = 0.3333333; ky(3, 10) = -2; ky(3, 11) = 0; ky(3, 12) = 0.6666667; 
ky(4, 1) = 2; ky(4, 2) = 0; ky(4, 3) = 1; ky(4, 4) = 4; ky(4, 5) = 0; ky(4, 6) = 2; ky(4, 7) = -4; ky(4, 8) = 0; ky(4, 

9) = 2; ky(4, 10) = -2; ky(4, 11) = 0; ky(4, 12) = 1; 
ky(5, 1) = 0; ky(5, 2) = 0; ky(5, 3) = 0; ky(5, 4) = 0; ky(5, 5) = 0; ky(5, 6) = 0; ky(5, 7) = 0; ky(5, 8) = 0; ky(5, 

9) = 0; ky(5, 10) = 0; ky(5, 11) = 0; ky(5, 12) = 0; 
ky(6, 1) = 1; ky(6, 2) = 0; ky(6, 3) = 0.6666667; ky(6, 4) = 2; ky(6, 5) = 0; ky(6, 6) = 1.3333333; ky(6, 7) = -2; 

ky(6, 8) = 0; ky(6, 9) = 0.6666667; ky(6, 10) = -1; ky(6, 11) = 0; ky(6, 12) = 0.3333333; 
ky(7, 1) = -2; ky(7, 2) = 0; ky(7, 3) = -1; ky(7, 4) = -4; ky(7, 5) = 0; ky(7, 6) = -2; ky(7, 7) = 4; ky(7, 8) = 0; 

ky(7, 9) = -2; ky(7, 10) = 2; ky(7, 11) = 0; ky(7, 12) = -1; 
ky(8, 1) = 0; ky(8, 2) = 0; ky(8, 3) = 0; ky(8, 4) = 0; ky(8, 5) = 0; ky(8, 6) = 0; ky(8, 7) = 0; ky(8, 8) = 0; ky(8, 

9) = 0; ky(8, 10) = 0; ky(8, 11) = 0; ky(8, 12) = 0; 
ky(9, 1) = 1; ky(9, 2) = 0; ky(9, 3) = 0.3333333; ky(9, 4) = 2; ky(9, 5) = 0; ky(9, 6) = 0.6666667; ky(9, 7) = -2; 

ky(9, 8) = 0; ky(9, 9) = 1.3333333; ky(9, 10) = -1; ky(9, 11) = 0; ky(9, 12) = 0.6666667; 
ky(10, 1) = -4; ky(10, 2) = 0; ky(10, 3) = -2; ky(10, 4) = -2; ky(10, 5) = 0; ky(10, 6) = -1; ky(10, 7) = 2; ky(10, 

8) = 0; ky(10, 9) = -1; ky(10, 10) = 4; ky(10, 11) = 0; ky(10, 12) = -2; 
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ky(11, 1) = 0; ky(11, 2) = 0; ky(11, 3) = 0; ky(11, 4) = 0; ky(11, 5) = 0; ky(11, 6) = 0; ky(11, 7) = 0; ky(11, 8) = 

0; ky(11, 9) = 0; ky(11, 10) = 0; ky(11, 11) = 0; ky(11, 12) = 0; 
ky(12, 1) = 2; ky(12, 2) = 0; ky(12, 3) = 0.6666667; ky(12, 4) = 1; ky(12, 5) = 0; ky(12, 6) = 0.3333333; ky(12, 

7) = -1; ky(12, 8) = 0; ky(12, 9) = 0.6666667; ky(12, 10) = -2; ky(12, 11) = 0; ky(12, 12) = 1.3333333; 
  
kxy(1, 1) = 2.8; kxy(1, 2) = 0.2; kxy(1, 3) = 0.2; kxy(1, 4) = -2.8; kxy(1, 5) = 0.2; kxy(1, 6) = -0.2; kxy(1, 7) = 

2.8; kxy(1, 8) = -0.2; kxy(1, 9) = -0.2; kxy(1, 10) = -2.8; kxy(1, 11) = -0.2; kxy(1, 12) = 0.2; 
kxy(2, 1) = 0.2; kxy(2, 2) = 0.2666667; kxy(2, 3) = 0; kxy(2, 4) = -0.2; kxy(2, 5) = -0.0666667; kxy(2, 6) = 0; 

kxy(2, 7) = 0.2; kxy(2, 8) = 0.0666667; kxy(2, 9) = 0; kxy(2, 10) = -0.2; kxy(2, 11) = -0.2666667; kxy(2, 12) = 

0; 
kxy(3, 1) = 0.2; kxy(3, 2) = 0; kxy(3, 3) = 0.2666667; kxy(3, 4) = -0.2; kxy(3, 5) = 0; kxy(3, 6) = -0.26666667; 

kxy(3, 7) = 0.2; kxy(3, 8) = 0; kxy(3, 9) = 0.0666667; kxy(3, 10) = -0.2; kxy(3, 11) = 0; kxy(3, 12) = -

0.0666667; 
kxy(4, 1) = -2.8; kxy(4, 2) = -0.2; kxy(4, 3) = -0.2; kxy(4, 4) = 2.8; kxy(4, 5) = -0.2; kxy(4, 6) = 0.2; kxy(4, 7) = 

-2.8; kxy(4, 8) = 0.2; kxy(4, 9) = 0.2; kxy(4, 10) = 2.8; kxy(4, 11) = 0.2; kxy(4, 12) = -0.2; 
kxy(5, 1) = 0.2; kxy(5, 2) = -0.0666667; kxy(5, 3) = 0; kxy(5, 4) = -0.2; kxy(5, 5) = 0.2666667; kxy(5, 6) = 0; 

kxy(5, 7) = 0.2; kxy(5, 8) = -0.2666667; kxy(5, 9) = 0; kxy(5, 10) = -0.2; kxy(5, 11) = 0.0666667; kxy(5, 12) = 

0; 
kxy(6, 1) = -0.2; kxy(6, 2) = 0; kxy(6, 3) = -0.2666667; kxy(6, 4) = 0.2; kxy(6, 5) = 0; kxy(6, 6) = 0.2666667; 

kxy(6, 7) = -0.2; kxy(6, 8) = 0; kxy(6, 9) = -0.0666667; kxy(6, 10) = 0.2; kxy(6, 11) = 0; kxy(6, 12) = 

0.0666667; 
kxy(7, 1) = 2.8; kxy(7, 2) = 0.2; kxy(7, 3) = 0.2; kxy(7, 4) = -2.8; kxy(7, 5) = 0.2; kxy(7, 6) = -0.2; kxy(7, 7) = 

2.8; kxy(7, 8) = -0.2; kxy(7, 9) = -0.2; kxy(7, 10) = -2.8; kxy(7, 11) = -0.2; kxy(7, 12) = 0.2; 
kxy(8, 1) = -0.2; kxy(8, 2) = 0.06666667; kxy(8, 3) = 0; kxy(8, 4) = 0.2; kxy(8, 5) = -0.2666667; kxy(8, 6) = 0; 

kxy(8, 7) = -0.2; kxy(8, 8) = 0.2666667; kxy(8, 9) = 0; kxy(8, 10) = 0.2; kxy(8, 11) = -0.0666667; kxy(8, 12) = 

0; 
kxy(9, 1) = -0.2; kxy(9, 2) = 0; kxy(9, 3) = 0.0666667; kxy(9, 4) = 0.2; kxy(9, 5) = 0; kxy(9, 6) = -0.0666667; 

kxy(9, 7) = -0.2; kxy(9, 8) = 0; kxy(9, 9) = 0.2666667; kxy(9, 10) = 0.2; kxy(9, 11) = 0; kxy(9, 12) = -

0.2666667; 
kxy(10, 1) = -2.8; kxy(10, 2) = -0.2; kxy(10, 3) = -0.2; kxy(10, 4) = 2.8; kxy(10, 5) = -0.2; kxy(10, 6) = 0.2; 

kxy(10, 7) = -2.8; kxy(10, 8) = 0.2; kxy(10, 9) = 0.2; kxy(10, 10) = 2.8; kxy(10, 11) = 0.2; kxy(10, 12) = -0.2; 
kxy(11, 1) = -0.2; kxy(11, 2) = -0.2666667; kxy(11, 3) = 0; kxy(11, 4) = 0.2; kxy(11, 5) = 0.0666667; kxy(11, 6) 

= 0; kxy(11, 7) = -0.2; kxy(11, 8) = -0.0666667; kxy(11, 9) = 0; kxy(11, 10) = 0.2; kxy(11, 11) = 0.2666667; 

kxy(11, 12) = 0; 
kxy(12, 1) = 0.2; kxy(12, 2) = 0; kxy(12, 3) = -0.0666667; kxy(12, 4) = -0.2; kxy(12, 5) = 0; kxy(12, 6) = 

0.0666667; kxy(12, 7) = 0.2; kxy(12, 8) = 0; kxy(12, 9) = -0.2666667; kxy(12, 10) = -0.2; kxy(12, 11) = 0; 

kxy(12, 12) = 0.2666667; 
  
%' Inertia matrix 
ki(1, 1) = 0.13706; ki(1, 2) = 0.01829; ki(1, 3) = 0.01829; ki(1, 4) = 0.04865; ki(1, 5) = -0.01087; ki(1, 6) = 

0.0079; ki(1, 7) = 0.01563; ki(1, 8) = -0.0046; ki(1, 9) = -0.0046; ki(1, 10) = 0.04865; ki(1, 11) = 0.0079; ki(1, 

12) = -0.01087; 
ki(2, 1) = 0.01829; ki(2, 2) = 0.00317; ki(2, 3) = 0.0025; ki(2, 4) = 0.01087; ki(2, 5) = -0.00238; ki(2, 6) = 

0.00167; ki(2, 7) = 0.0046; ki(2, 8) = -0.00119; ki(2, 9) = -0.00111; ki(2, 10) = 0.0079; ki(2, 11) = 0.00159; 

ki(2, 12) = -0.00167; 
ki(3, 1) = 0.01829; ki(3, 2) = 0.0025; ki(3, 3) = 0.00317; ki(3, 4) = 0.0079; ki(3, 5) = -0.00167; ki(3, 6) = 

0.00159; ki(3, 7) = 0.0046; ki(3, 8) = -0.00111; ki(3, 9) = -0.00119; ki(3, 10) = 0.01087; ki(3, 11) = 0.00167; 

ki(3, 12) = -0.00238; 
ki(4, 1) = 0.04865; ki(4, 2) = 0.01087; ki(4, 3) = 0.0079; ki(4, 4) = 0.13706; ki(4, 5) = -0.01829; ki(4, 6) = 

0.01829; ki(4, 7) = 0.04865; ki(4, 8) = -0.0079; ki(4, 9) = -0.01087; ki(4, 10) = 0.01563; ki(4, 11) = 0.0046; 

ki(4, 12) = -0.0046; 
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ki(5, 1) = -0.01087; ki(5, 2) = -0.00238; ki(5, 3) = -0.00167; ki(5, 4) = -0.01829; ki(5, 5) = 0.00317; ki(5, 6) = -

0.0025; ki(5, 7) = -0.0079; ki(5, 8) = 0.00159; ki(5, 9) = 0.00167; ki(5, 10) = -0.0046; ki(5, 11) = -0.00119; ki(5, 

12) = 0.00111; 
ki(6, 1) = 0.0079; ki(6, 2) = 0.00167; ki(6, 3) = 0.00159; ki(6, 4) = 0.01829; ki(6, 5) = -0.0025; ki(6, 6) = 

0.00317; ki(6, 7) = 0.01087; ki(6, 8) = -0.00167; ki(6, 9) = -0.00238; ki(6, 10) = 0.0046; ki(6, 11) = 0.00111; 

ki(6, 12) = -0.00119; 
ki(7, 1) = 0.01563; ki(7, 2) = 0.0046; ki(7, 3) = 0.0046; ki(7, 4) = 0.04865; ki(7, 5) = -0.0079; ki(7, 6) = 

0.01087; ki(7, 7) = 0.13706; ki(7, 8) = -0.01829; ki(7, 9) = -0.01829; ki(7, 10) = 0.04865; ki(7, 11) = 0.01087; 

ki(7, 12) = -0.0079; 
ki(8, 1) = -0.0046; ki(8, 2) = -0.00119; ki(8, 3) = -0.00111; ki(8, 4) = -0.0079; ki(8, 5) = 0.00159; ki(8, 6) = -

0.00167; ki(8, 7) = -0.01829; ki(8, 8) = 0.00317; ki(8, 9) = 0.0025; ki(8, 10) = -0.01087; ki(8, 11) = -0.00238; 

ki(8, 12) = 0.00167; 
ki(9, 1) = -0.0046; ki(9, 2) = -0.00111; ki(9, 3) = -0.00119; ki(9, 4) = -0.01087; ki(9, 5) = 0.00167; ki(9, 6) = -

0.00238; ki(9, 7) = -0.01829; ki(9, 8) = 0.0025; ki(9, 9) = 0.00317; ki(9, 10) = -0.0079; ki(9, 11) = -0.00167; 

ki(9, 12) = 0.00159; 
ki(10, 1) = 0.04865; ki(10, 2) = 0.0079; ki(10, 3) = 0.01087; ki(10, 4) = 0.01563; ki(10, 5) = -0.0046; ki(10, 6) = 

0.0046; ki(10, 7) = 0.04865; ki(10, 8) = -0.01087; ki(10, 9) = -0.0079; ki(10, 10) = 0.13706; ki(10, 11) = 

0.01829; ki(10, 12) = -0.01829; 
ki(11, 1) = 0.0079; ki(11, 2) = 0.00159; ki(11, 3) = 0.00167; ki(11, 4) = 0.0046; ki(11, 5) = -0.00119; ki(11, 6) = 

0.00111; ki(11, 7) = 0.01087; ki(11, 8) = -0.00238; ki(11, 9) = -0.00167; ki(11, 10) = 0.01829; ki(11, 11) = 

0.00317; ki(11, 12) = -0.0025; 
ki(12, 1) = -0.01087; ki(12, 2) = -0.00167; ki(12, 3) = -0.00238; ki(12, 4) = -0.0046; ki(12, 5) = 0.00111; ki(12, 

6) = -0.00119; ki(12, 7) = -0.0079; ki(12, 8) = 0.00167; ki(12, 9) = 0.00159; ki(12, 10) = -0.01829; ki(12, 11) = 

-0.0025; ki(12, 12) = 0.00317; 
  

  
for x = 1 : 12 
for y = 1 : 12 
k(x, y) = k(x, y) + kx(x, y) + kxy(x, y) / af ^ 2 + ky(x, y) / af ^ 4; 
end 
end 
  
  
%'TYP = InputBox("WHAT TYPE OF PLATE? 1 for SSSS, 2 for CCCC, 3 for CSCS, 4 for CCSS, 5 for 

CCCS, 6 for CSSS"); TYP = TYP * 1 
g = input('WHAT IS THE SIZE OF THE GRID 3,5,7 etc?'); g = g * 1;  
n = 3 * (g ^ 2); NN = (g + 2 + g) * 2; m = 3; mm = 3 * g; nm = n ; 
%ReDim kk(nm, nm), q(nm), kki(nm, nm), kii(nm, nm) 
for x = 1 : nm 
for y = 1 : nm 
 kk(x, y) = 0; kii(x, y) = 0; kki(x, y) = 0; 
 end 
 end 
  
% STIFFNESS for PURE W one node 
    x = 1; 
    %for x = 1 : n - 2 Step 3 
    while x < n - 1 
        kk(x, x) = 4 * k(1, 1); kii(x, x) = 4 * ki(1, 1); 
        x = x + 3; 
    end 
% Pure Tx one node 
    x = 2; 
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 % for x = 2 : n - 1 Step 3 
    while x < n 
        kk(x, x) = 4 * k(2, 2); kii(x, x) = 4 * ki(2, 2); 
        x = x + 3; 
     end 
  
% Pure Ty one node 
    x = 3; 
    % for x = 3 : n Step 3 
   while x < n + 1 
        kk(x, x) = 4 * k(3, 3); kii(x, x) = 4 * ki(3, 3); 
        x = x + 3; 
     end 
  
% Pure W-Tx; W-Ty one node 
    x = 3; 
    %for x = 3 : n - 2 Step 3 
    while x < n - 1 
        kk(x, x + 1) = 0; kii(x, x + 1) = 0; 
        kk(x, x + 2) = 0; kii(x, x + 2) = 0; 
        x = x + 3; 
     end 

% Pure W two nodes 
    t = 1; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(1, 4) + k(10, 7); kii(t, t1) = ki(1, 4) + ki(10, 7); 
        kk(t, t2) = k(1, 10) + k(4, 7); kii(t, t2) = ki(1, 10) + ki(4, 7); 
        kk(t, t3) = k(1, 7); kii(t, t3) = ki(1, 7); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g - 2; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(1, 10) + k(4, 7); kii(t, t1) = ki(1, 10) + ki(4, 7); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 1; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(1, 4) + k(10, 7); kii(t, t1) = ki(1, 4) + ki(10, 7); 
        t = t1; t1 = t1 + 3; 
    end 
     
    % Pure Tx two nodes  
    t = 2; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
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  for y = 1 : g - 1 

        kk(t, t1) = k(2, 5) + k(11, 8); kii(t, t1) = ki(2, 5) + ki(11, 8); 
        kk(t, t2) = k(2, 11) + k(5, 8); kii(t, t2) = ki(2, 11) + ki(5, 8); 
        kk(t, t3) = k(2, 8); kii(t, t3) = ki(2, 8); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g - 1; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(2, 11) + k(5, 8); kii(t, t1) = ki(2, 11) + ki(5, 8); 

   
   t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 2; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(2, 5) + k(11, 8); kii(t, t1) = ki(2, 5) + ki(11, 8); 
        t = t1; t1 = t1 + 3; 
    end 
  
  % Pure Ty two nodes  
    t = 3; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(3, 6) + k(12, 9); kii(t, t1) = ki(3, 6) + ki(12, 9); 
        kk(t, t2) = k(3, 12) + k(6, 9); kii(t, t2) = ki(3, 12) + ki(6, 9); 
        kk(t, t3) = k(3, 9); kii(t, t3) = ki(3, 9); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(3, 12) + k(6, 9); kii(t, t1) = ki(3, 12) + ki(6, 9); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 3; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(3, 6) + k(12, 9); kii(t, t1) = ki(3, 6) + ki(12, 9); 
        t = t1; t1 = t1 + 3; 
    end 
     
    % Pure W two nodes back down 
    t = 4; t1 = t + 3 * (g - 1); t2 = t1 + 1; t3 = t1 + 2; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
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  for y = 1 : g - 1 
        kk(t, t1) = k(4, 10); kii(t, t1) = ki(4, 10); 
        kk(t + 1, t1) = k(5, 10); kii(t + 1, t1) = ki(5, 10); 
        kk(t + 2, t1) = k(6, 10); kii(t + 2, t1) = ki(6, 10); 
         
        kk(t + 1, t2) = k(5, 11); kii(t + 1, t2) = ki(5, 11); 
        kk(t + 2, t3) = k(6, 12); kii(t + 2, t3) = ki(6, 12); 
         
        kk(t, t2) = k(4, 11); kii(t, t2) = ki(4, 11); 
        kk(t, t3) = k(4, 12); kii(t, t3) = ki(4, 12); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
  
 
 % W-Tx W-Ty two nodes 
    t = 1; tx1 = t + 4; ty1 = t + 5; tx2 = t + 3 * g + 1; ty2 = t + 3 * g + 2; 
    tx3 = tx2 + 3; ty3 = ty2 + 3; 
    tt = t; ttx1 = tx1; tty1 = ty1; ttx2 = tx2; tty2 = ty2; 
    ttx3 = tx3; tty3 = ty3; 
     
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, tx1) = k(1, 5) + k(10, 8); kii(t, tx1) = ki(1, 5) + ki(10, 8); 
        kk(t + 1, tx1 - 1) = k(2, 4) + k(11, 7); kii(t + 1, tx1 - 1) = ki(2, 4) + ki(11, 7); 
        kk(t + 2, tx1 - 1) = k(3, 4) + k(12, 7); kii(t + 2, tx1 - 1) = ki(3, 4) + ki(12, 7); 
         
        kk(t, tx2) = k(1, 11) + k(4, 8); kii(t, tx2) = ki(1, 11) + ki(4, 8); 
        kk(t + 1, tx2 - 1) = k(2, 10) + k(5, 7); kii(t + 1, tx2 - 1) = ki(2, 10) + ki(5, 7); 
        kk(t + 2, tx2 - 1) = k(3, 10) + k(6, 7); kii(t + 2, tx2 - 1) = ki(3, 10) + ki(6, 7); 
         
        kk(t, tx3) = k(1, 8); kii(t, tx3) = ki(1, 8); 
        kk(t + 1, tx3 - 1) = k(2, 7); kii(t + 1, tx3 - 1) = ki(2, 7); 
        kk(t + 2, tx3 - 1) = k(3, 7); kii(t + 2, tx3 - 1) = ki(3, 7); 
         
        kk(t, ty1) = k(1, 6) + k(10, 9); kii(t, ty1) = ki(1, 6) + ki(10, 9); 
        kk(t, ty2) = k(1, 12) + k(4, 9); kii(t, ty2) = ki(1, 12) + ki(4, 9); 
        kk(t, ty3) = k(1, 9); kii(t, ty3) = ki(1, 9); 
        t = t + 3; tx1 = tx1 + 3; tx2 = tx2 + 3; tx3 = tx3 + 3; 
        ty1 = ty1 + 3; ty2 = ty2 + 3; ty3 = ty3 + 3; 
    end 
        t = tt + 3 * g; tx1 = ttx1 + 3 * g; tx2 = ttx2 + 3 * g; tx3 = ttx3 + 3 * g;  
        ty1 = tty1 + 3 * g; ty2 = tty2 + 3 * g; ty3 = tty3 + 3 * g; 
        tt = t; ttx1 = tx1; ttx2 = tx2; ttx3 = tx3; 
        tty1 = ty1; tty2 = ty2; tty3 = ty3; 
    end 
     
    t = 3 * g - 2; tx1 = t + 3 * g + 1; ty1 = t + 3 * g + 2; 
    for x = 1 : g - 1 
        kk(t, tx1) = k(1, 11) + k(4, 8); kii(t, tx1) = ki(1, 11) + ki(4, 8); 
        kk(t + 1, tx1 - 1) = k(5, 7) + k(2, 10); kii(t + 1, tx1 - 1) = ki(5, 7) + ki(2, 10); 
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        kk(t + 2, tx1 - 1) = k(6, 7) + k(3, 10); kii(t + 2, tx1 - 1) = ki(6, 7) + ki(3, 10); 
         
        kk(t, ty1) = k(1, 12) + k(4, 9); kii(t, ty1) = ki(1, 12) + ki(4, 9); 
        t = tx1 - 1; tx1 = tx1 + 3 * g; ty1 = ty1 + 3 * g; 
    end 
     
    t = n - 3 * g + 1; tx1 = t + 4; ty1 = t + 5; 
    for x = 1 : g - 1 
        kk(t, tx1) = k(1, 5) + k(10, 8); kii(t, tx1) = ki(1, 5) + ki(10, 8); 
        kk(t + 1, tx1 - 1) = k(11, 7) + k(2, 4); kii(t + 1, tx1 - 1) = ki(11, 7) + ki(2, 4); 
        kk(t + 2, tx1 - 1) = k(12, 7) + k(3, 4); kii(t + 2, tx1 - 1) = ki(12, 7) + ki(3, 4); 
         
        kk(t, ty1) = k(1, 6) + k(10, 9); kii(t, ty1) = ki(1, 6) + ki(10, 9); 
        t = tx1 - 1; tx1 = tx1 + 3; ty1 = ty1 + 3; 
    end 
     
%Complete the symmetry 
 for x = 1 : nm 
    for y = 1 : nm 
    kk(y, x) = kk(x, y); kii(y, x) = kii(x, y); 
    end 
 end 
  
%Load Vector 
  
x = 1; 
while x < n + 1 
%for x = 1 : n Step 3 
    %%for x = 1 : n - 2 Step 3 
        q(x) = 1; 
        q(x + 1) = 0; 
         q(x + 2) = 0; 
     x = x +3; 
%end 
end 
  
  
  ncd = (n - 1) / 2; 
kgv = inv(kk);  
dd = kgv * transpose(q); 
dc = dd(ncd) *1000 / (1 + g) ^ 4; 
kki = inv(kii)* kk; 
ld = eig(kki)* (1 + g) ^ 4;  
% ld = eig(kki);  
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%ReDim kx(12, 12), kxy(12, 12), ky(12, 12), k(12, 12), ki(12, 12) 
for x = 1 : 12 
for y = 1 : 12 
k(x, y) = 0; kx(x, y) = 0; kxy(x, y) = 0; ky(x, y) = 0; 
end 
end 
af = input('WHAT IS THE aspect ratio, b/a?'); af = af * 1; 
kx(1, 1) = 4; kx(1, 2) = 2; kx(1, 3) = 0; kx(1, 4) = -4; kx(1, 5) = 2; kx(1, 6) = 0; kx(1, 7) = -2; kx(1, 8) = 1; kx(1, 

9) = 0; kx(1, 10) = 2; kx(1, 11) = 1; kx(1, 12) = 0; 
kx(2, 1) = 2; kx(2, 2) = 1.333333; kx(2, 3) = 0; kx(2, 4) = -2; kx(2, 5) = 0.6666667; kx(2, 6) = 0; kx(2, 7) = -1; 

kx(2, 8) = 0.333333; kx(2, 9) = 0; kx(2, 10) = 1; kx(2, 11) = 0.6666667; kx(2, 12) = 0; 
kx(3, 1) = 0; kx(3, 2) = 0; kx(3, 3) = 0; kx(3, 4) = 0; kx(3, 5) = 0; kx(3, 6) = 0; kx(3, 7) = 0; kx(3, 8) = 0; kx(3, 

9) = 0; kx(3, 10) = 0; kx(3, 11) = 0; kx(3, 12) = 0; 
kx(4, 1) = -4; kx(4, 2) = -2; kx(4, 3) = 0; kx(4, 4) = 4; kx(4, 5) = -2; kx(4, 6) = 0; kx(4, 7) = 2; kx(4, 8) = -1; 

kx(4, 9) = 0; kx(4, 10) = -2; kx(4, 11) = -1; kx(4, 12) = 0; 
kx(5, 1) = 2; kx(5, 2) = 0.6666667; kx(5, 3) = 0; kx(5, 4) = -2; kx(5, 5) = 1.3333333; kx(5, 6) = 0; kx(5, 7) = -1; 

kx(5, 8) = 0.6666667; kx(5, 9) = 0; kx(5, 10) = 1; kx(5, 11) = 0.3333333; kx(5, 12) = 0; 
kx(6, 1) = 0; kx(6, 2) = 0; kx(6, 3) = 0; kx(6, 4) = 0; kx(6, 5) = 0; kx(6, 6) = 0; kx(6, 7) = 0; kx(6, 8) = 0; kx(6, 

9) = 0; kx(6, 10) = 0; kx(6, 11) = 0; kx(6, 12) = 0; 
kx(7, 1) = -2; kx(7, 2) = -1; kx(7, 3) = 0; kx(7, 4) = 2; kx(7, 5) = -1; kx(7, 6) = 0; kx(7, 7) = 4; kx(7, 8) = -2; 

kx(7, 9) = 0; kx(7, 10) = -4; kx(7, 11) = -2; kx(7, 12) = 0; 
kx(8, 1) = 1; kx(8, 2) = 0.3333333; kx(8, 3) = 0; kx(8, 4) = -1; kx(8, 5) = 0.6666667; kx(8, 6) = 0; kx(8, 7) = -2; 

kx(8, 8) = 1.3333333; kx(8, 9) = 0; kx(8, 10) = 2; kx(8, 11) = 0.6666667; kx(8, 12) = 0; 
kx(9, 1) = 0; kx(9, 2) = 0; kx(9, 3) = 0; kx(9, 4) = 0; kx(9, 5) = 0; kx(9, 6) = 0; kx(9, 7) = 0; kx(9, 8) = 0; kx(9, 

9) = 0; kx(9, 10) = 0; kx(9, 11) = 0; kx(9, 12) = 0; 
kx(10, 1) = 2; kx(10, 2) = 1; kx(10, 3) = 0; kx(10, 4) = -2; kx(10, 5) = 1; kx(10, 6) = 0; kx(10, 7) = -4; kx(10, 8) 

= 2; kx(10, 9) = 0; kx(10, 10) = 4; kx(10, 11) = 2; kx(10, 12) = 0; 
kx(11, 1) = 1; kx(11, 2) = 0.6666667; kx(11, 3) = 0; kx(11, 4) = -1; kx(11, 5) = 0.3333333; kx(11, 6) = 0; kx(11, 

7) = -2; kx(11, 8) = 0.6666667; kx(11, 9) = 0; kx(11, 10) = 2; kx(11, 11) = 1.3333333; kx(11, 12) = 0; 
kx(12, 1) = 0; kx(12, 2) = 0; kx(12, 3) = 0; kx(12, 4) = 0; kx(12, 5) = 0; kx(12, 6) = 0; kx(12, 7) = 0; kx(12, 8) = 

0; kx(12, 9) = 0; kx(12, 10) = 0; kx(12, 11) = 0; kx(12, 12) = 0; 
  
  
ky(1, 1) = 4; ky(1, 2) = 0; ky(1, 3) = 2; ky(1, 4) = 2; ky(1, 5) = 0; ky(1, 6) = 1; ky(1, 7) = -2; ky(1, 8) = 0; ky(1, 

9) = 1; ky(1, 10) = -4; ky(1, 11) = 0; ky(1, 12) = 2; 
ky(2, 1) = 0; ky(2, 2) = 0; ky(2, 3) = 0; ky(2, 4) = 0; ky(2, 5) = 0; ky(2, 6) = 0; ky(2, 7) = 0; ky(2, 8) = 0; ky(2, 

9) = 0; ky(2, 10) = 0; ky(2, 11) = 0; ky(2, 12) = 0; 
ky(3, 1) = 2; ky(3, 2) = 0; ky(3, 3) = 1.3333333; ky(3, 4) = 1; ky(3, 5) = 0; ky(3, 6) = 0.6666667; ky(3, 7) = -1; 

ky(3, 8) = 0; ky(3, 9) = 0.3333333; ky(3, 10) = -2; ky(3, 11) = 0; ky(3, 12) = 0.6666667; 
ky(4, 1) = 2; ky(4, 2) = 0; ky(4, 3) = 1; ky(4, 4) = 4; ky(4, 5) = 0; ky(4, 6) = 2; ky(4, 7) = -4; ky(4, 8) = 0; ky(4, 

9) = 2; ky(4, 10) = -2; ky(4, 11) = 0; ky(4, 12) = 1; 
ky(5, 1) = 0; ky(5, 2) = 0; ky(5, 3) = 0; ky(5, 4) = 0; ky(5, 5) = 0; ky(5, 6) = 0; ky(5, 7) = 0; ky(5, 8) = 0; ky(5, 

9) = 0; ky(5, 10) = 0; ky(5, 11) = 0; ky(5, 12) = 0; 
ky(6, 1) = 1; ky(6, 2) = 0; ky(6, 3) = 0.6666667; ky(6, 4) = 2; ky(6, 5) = 0; ky(6, 6) = 1.3333333; ky(6, 7) = -2; 

ky(6, 8) = 0; ky(6, 9) = 0.6666667; ky(6, 10) = -1; ky(6, 11) = 0; ky(6, 12) = 0.3333333; 
ky(7, 1) = -2; ky(7, 2) = 0; ky(7, 3) = -1; ky(7, 4) = -4; ky(7, 5) = 0; ky(7, 6) = -2; ky(7, 7) = 4; ky(7, 8) = 0; 

ky(7, 9) = -2; ky(7, 10) = 2; ky(7, 11) = 0; ky(7, 12) = -1; 
ky(8, 1) = 0; ky(8, 2) = 0; ky(8, 3) = 0; ky(8, 4) = 0; ky(8, 5) = 0; ky(8, 6) = 0; ky(8, 7) = 0; ky(8, 8) = 0; ky(8, 

9) = 0; ky(8, 10) = 0; ky(8, 11) = 0; ky(8, 12) = 0; 
ky(9, 1) = 1; ky(9, 2) = 0; ky(9, 3) = 0.3333333; ky(9, 4) = 2; ky(9, 5) = 0; ky(9, 6) = 0.6666667; ky(9, 7) = -2; 

ky(9, 8) = 0; ky(9, 9) = 1.3333333; ky(9, 10) = -1; ky(9, 11) = 0; ky(9, 12) = 0.6666667; 
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ky(10, 1) = -4; ky(10, 2) = 0; ky(10, 3) = -2; ky(10, 4) = -2; ky(10, 5) = 0; ky(10, 6) = -1; ky(10, 7) = 2; ky(10, 

8) = 0; ky(10, 9) = -1; ky(10, 10) = 4; ky(10, 11) = 0; ky(10, 12) = -2; 
ky(11, 1) = 0; ky(11, 2) = 0; ky(11, 3) = 0; ky(11, 4) = 0; ky(11, 5) = 0; ky(11, 6) = 0; ky(11, 7) = 0; ky(11, 8) = 

0; ky(11, 9) = 0; ky(11, 10) = 0; ky(11, 11) = 0; ky(11, 12) = 0; 
ky(12, 1) = 2; ky(12, 2) = 0; ky(12, 3) = 0.6666667; ky(12, 4) = 1; ky(12, 5) = 0; ky(12, 6) = 0.3333333; ky(12, 

7) = -1; ky(12, 8) = 0; ky(12, 9) = 0.6666667; ky(12, 10) = -2; ky(12, 11) = 0; ky(12, 12) = 1.3333333; 
  
kxy(1, 1) = 2.8; kxy(1, 2) = 0.2; kxy(1, 3) = 0.2; kxy(1, 4) = -2.8; kxy(1, 5) = 0.2; kxy(1, 6) = -0.2; kxy(1, 7) = 

2.8; kxy(1, 8) = -0.2; kxy(1, 9) = -0.2; kxy(1, 10) = -2.8; kxy(1, 11) = -0.2; kxy(1, 12) = 0.2; 
kxy(2, 1) = 0.2; kxy(2, 2) = 0.2666667; kxy(2, 3) = 0; kxy(2, 4) = -0.2; kxy(2, 5) = -0.0666667; kxy(2, 6) = 0; 

kxy(2, 7) = 0.2; kxy(2, 8) = 0.0666667; kxy(2, 9) = 0; kxy(2, 10) = -0.2; kxy(2, 11) = -0.2666667; kxy(2, 12) = 

0; 
kxy(3, 1) = 0.2; kxy(3, 2) = 0; kxy(3, 3) = 0.2666667; kxy(3, 4) = -0.2; kxy(3, 5) = 0; kxy(3, 6) = -0.26666667; 

kxy(3, 7) = 0.2; kxy(3, 8) = 0; kxy(3, 9) = 0.0666667; kxy(3, 10) = -0.2; kxy(3, 11) = 0; kxy(3, 12) = -

0.0666667; 
kxy(4, 1) = -2.8; kxy(4, 2) = -0.2; kxy(4, 3) = -0.2; kxy(4, 4) = 2.8; kxy(4, 5) = -0.2; kxy(4, 6) = 0.2; kxy(4, 7) = 

-2.8; kxy(4, 8) = 0.2; kxy(4, 9) = 0.2; kxy(4, 10) = 2.8; kxy(4, 11) = 0.2; kxy(4, 12) = -0.2; 
kxy(5, 1) = 0.2; kxy(5, 2) = -0.0666667; kxy(5, 3) = 0; kxy(5, 4) = -0.2; kxy(5, 5) = 0.2666667; kxy(5, 6) = 0; 

kxy(5, 7) = 0.2; kxy(5, 8) = -0.2666667; kxy(5, 9) = 0; kxy(5, 10) = -0.2; kxy(5, 11) = 0.0666667; kxy(5, 12) = 

0; 
kxy(6, 1) = -0.2; kxy(6, 2) = 0; kxy(6, 3) = -0.2666667; kxy(6, 4) = 0.2; kxy(6, 5) = 0; kxy(6, 6) = 0.2666667; 

kxy(6, 7) = -0.2; kxy(6, 8) = 0; kxy(6, 9) = -0.0666667; kxy(6, 10) = 0.2; kxy(6, 11) = 0; kxy(6, 12) = 

0.0666667; 
kxy(7, 1) = 2.8; kxy(7, 2) = 0.2; kxy(7, 3) = 0.2; kxy(7, 4) = -2.8; kxy(7, 5) = 0.2; kxy(7, 6) = -0.2; kxy(7, 7) = 

2.8; kxy(7, 8) = -0.2; kxy(7, 9) = -0.2; kxy(7, 10) = -2.8; kxy(7, 11) = -0.2; kxy(7, 12) = 0.2; 
kxy(8, 1) = -0.2; kxy(8, 2) = 0.06666667; kxy(8, 3) = 0; kxy(8, 4) = 0.2; kxy(8, 5) = -0.2666667; kxy(8, 6) = 0; 

kxy(8, 7) = -0.2; kxy(8, 8) = 0.2666667; kxy(8, 9) = 0; kxy(8, 10) = 0.2; kxy(8, 11) = -0.0666667; kxy(8, 12) = 

0; 
kxy(9, 1) = -0.2; kxy(9, 2) = 0; kxy(9, 3) = 0.0666667; kxy(9, 4) = 0.2; kxy(9, 5) = 0; kxy(9, 6) = -0.0666667; 

kxy(9, 7) = -0.2; kxy(9, 8) = 0; kxy(9, 9) = 0.2666667; kxy(9, 10) = 0.2; kxy(9, 11) = 0; kxy(9, 12) = -

0.2666667; 
kxy(10, 1) = -2.8; kxy(10, 2) = -0.2; kxy(10, 3) = -0.2; kxy(10, 4) = 2.8; kxy(10, 5) = -0.2; kxy(10, 6) = 0.2; 

kxy(10, 7) = -2.8; kxy(10, 8) = 0.2; kxy(10, 9) = 0.2; kxy(10, 10) = 2.8; kxy(10, 11) = 0.2; kxy(10, 12) = -0.2; 
kxy(11, 1) = -0.2; kxy(11, 2) = -0.2666667; kxy(11, 3) = 0; kxy(11, 4) = 0.2; kxy(11, 5) = 0.0666667; kxy(11, 6) 

= 0; kxy(11, 7) = -0.2; kxy(11, 8) = -0.0666667; kxy(11, 9) = 0; kxy(11, 10) = 0.2; kxy(11, 11) = 0.2666667; 

kxy(11, 12) = 0; 
kxy(12, 1) = 0.2; kxy(12, 2) = 0; kxy(12, 3) = -0.0666667; kxy(12, 4) = -0.2; kxy(12, 5) = 0; kxy(12, 6) = 

0.0666667; kxy(12, 7) = 0.2; kxy(12, 8) = 0; kxy(12, 9) = -0.2666667; kxy(12, 10) = -0.2; kxy(12, 11) = 0; 

kxy(12, 12) = 0.2666667; 
  
%' Inertia matrix 
ki(1, 1) = 0.13706; ki(1, 2) = 0.01829; ki(1, 3) = 0.01829; ki(1, 4) = 0.04865; ki(1, 5) = -0.01087; ki(1, 6) = 

0.0079; ki(1, 7) = 0.01563; ki(1, 8) = -0.0046; ki(1, 9) = -0.0046; ki(1, 10) = 0.04865; ki(1, 11) = 0.0079; ki(1, 

12) = -0.01087; 
ki(2, 1) = 0.01829; ki(2, 2) = 0.00317; ki(2, 3) = 0.0025; ki(2, 4) = 0.01087; ki(2, 5) = -0.00238; ki(2, 6) = 

0.00167; ki(2, 7) = 0.0046; ki(2, 8) = -0.00119; ki(2, 9) = -0.00111; ki(2, 10) = 0.0079; ki(2, 11) = 0.00159; 

ki(2, 12) = -0.00167; 
ki(3, 1) = 0.01829; ki(3, 2) = 0.0025; ki(3, 3) = 0.00317; ki(3, 4) = 0.0079; ki(3, 5) = -0.00167; ki(3, 6) = 

0.00159; ki(3, 7) = 0.0046; ki(3, 8) = -0.00111; ki(3, 9) = -0.00119; ki(3, 10) = 0.01087; ki(3, 11) = 0.00167; 

ki(3, 12) = -0.00238; 
ki(4, 1) = 0.04865; ki(4, 2) = 0.01087; ki(4, 3) = 0.0079; ki(4, 4) = 0.13706; ki(4, 5) = -0.01829; ki(4, 6) = 

0.01829; ki(4, 7) = 0.04865; ki(4, 8) = -0.0079; ki(4, 9) = -0.01087; ki(4, 10) = 0.01563; ki(4, 11) = 0.0046; 

ki(4, 12) = -0.0046; 
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ki(5, 1) = -0.01087; ki(5, 2) = -0.00238; ki(5, 3) = -0.00167; ki(5, 4) = -0.01829; ki(5, 5) = 0.00317; ki(5, 6) = -

0.0025; ki(5, 7) = -0.0079; ki(5, 8) = 0.00159; ki(5, 9) = 0.00167; ki(5, 10) = -0.0046; ki(5, 11) = -0.00119; ki(5, 

12) = 0.00111; 
ki(6, 1) = 0.0079; ki(6, 2) = 0.00167; ki(6, 3) = 0.00159; ki(6, 4) = 0.01829; ki(6, 5) = -0.0025; ki(6, 6) = 

0.00317; ki(6, 7) = 0.01087; ki(6, 8) = -0.00167; ki(6, 9) = -0.00238; ki(6, 10) = 0.0046; ki(6, 11) = 0.00111; 

ki(6, 12) = -0.00119; 
ki(7, 1) = 0.01563; ki(7, 2) = 0.0046; ki(7, 3) = 0.0046; ki(7, 4) = 0.04865; ki(7, 5) = -0.0079; ki(7, 6) = 

0.01087; ki(7, 7) = 0.13706; ki(7, 8) = -0.01829; ki(7, 9) = -0.01829; ki(7, 10) = 0.04865; ki(7, 11) = 0.01087; 

ki(7, 12) = -0.0079; 
ki(8, 1) = -0.0046; ki(8, 2) = -0.00119; ki(8, 3) = -0.00111; ki(8, 4) = -0.0079; ki(8, 5) = 0.00159; ki(8, 6) = -

0.00167; ki(8, 7) = -0.01829; ki(8, 8) = 0.00317; ki(8, 9) = 0.0025; ki(8, 10) = -0.01087; ki(8, 11) = -0.00238; 

ki(8, 12) = 0.00167; 
ki(9, 1) = -0.0046; ki(9, 2) = -0.00111; ki(9, 3) = -0.00119; ki(9, 4) = -0.01087; ki(9, 5) = 0.00167; ki(9, 6) = -

0.00238; ki(9, 7) = -0.01829; ki(9, 8) = 0.0025; ki(9, 9) = 0.00317; ki(9, 10) = -0.0079; ki(9, 11) = -0.00167; 

ki(9, 12) = 0.00159; 
ki(10, 1) = 0.04865; ki(10, 2) = 0.0079; ki(10, 3) = 0.01087; ki(10, 4) = 0.01563; ki(10, 5) = -0.0046; ki(10, 6) = 

0.0046; ki(10, 7) = 0.04865; ki(10, 8) = -0.01087; ki(10, 9) = -0.0079; ki(10, 10) = 0.13706; ki(10, 11) = 

0.01829; ki(10, 12) = -0.01829; 
ki(11, 1) = 0.0079; ki(11, 2) = 0.00159; ki(11, 3) = 0.00167; ki(11, 4) = 0.0046; ki(11, 5) = -0.00119; ki(11, 6) = 

0.00111; ki(11, 7) = 0.01087; ki(11, 8) = -0.00238; ki(11, 9) = -0.00167; ki(11, 10) = 0.01829; ki(11, 11) = 

0.00317; ki(11, 12) = -0.0025; 
ki(12, 1) = -0.01087; ki(12, 2) = -0.00167; ki(12, 3) = -0.00238; ki(12, 4) = -0.0046; ki(12, 5) = 0.00111; ki(12, 

6) = -0.00119; ki(12, 7) = -0.0079; ki(12, 8) = 0.00167; ki(12, 9) = 0.00159; ki(12, 10) = -0.01829; ki(12, 11) = 

-0.0025; ki(12, 12) = 0.00317; 
  

  
for x = 1 : 12 
for y = 1 : 12 
k(x, y) = k(x, y) + kx(x, y) + kxy(x, y) / af ^ 2 + ky(x, y) / af ^ 4; 
end 
end 
  
  
%'TYP = InputBox("WHAT TYPE OF PLATE? 1 for SSSS, 2 for CCCC, 3 for CSCS, 4 for CCSS, 5 for 

CCCS, 6 for CSSS"); TYP = TYP * 1 
g = input('WHAT IS THE SIZE OF THE GRID 3,5,7 etc?'); g = g * 1;  
n = 3 * (g ^ 2); NN = (g + 2 + g) * 2; m = 3; mm = 3 * g; nm = n + 2 * g;  
%ReDim kk(nm, nm), q(nm), kki(nm, nm), kii(nm, nm) 
for x = 1 : nm 
for y = 1 : nm 
 kk(x, y) = 0; kii(x, y) = 0; kki(x, y) = 0; 
 end 
 end 
  
% STIFFNESS for PURE W one node 
    x = 1; 
    %for x = 1 : n - 2 Step 3 
    while x < n - 1 
        kk(x, x) = 4 * k(1, 1); kii(x, x) = 4 * ki(1, 1); 
        x = x + 3; 
    end 
% Pure Tx one node 
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    x = 2; 
    % for x = 2 : n - 1 Step 3 
    while x < n 
        kk(x, x) = 4 * k(2, 2); kii(x, x) = 4 * ki(2, 2); 
        x = x + 3; 
     end 
 

% Pure Ty one node 
    x = 3; 
    % for x = 3 : n Step 3 
    while x < n + 1 
        kk(x, x) = 4 * k(3, 3); kii(x, x) = 4 * ki(3, 3); 
        x = x + 3; 
     end 
  
% Pure W-Tx; W-Ty one node 
    x = 3; 
    %for x = 3 : n - 2 Step 3 
    while x < n - 1 
        kk(x, x + 1) = 0; kii(x, x + 1) = 0; 
        kk(x, x + 2) = 0; kii(x, x + 2) = 0; 
        x = x + 3; 
     end 
% Pure W two nodes  
    t = 1; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(1, 4) + k(10, 7); kii(t, t1) = ki(1, 4) + ki(10, 7); 
        kk(t, t2) = k(1, 10) + k(4, 7); kii(t, t2) = ki(1, 10) + ki(4, 7); 
        kk(t, t3) = k(1, 7); kii(t, t3) = ki(1, 7); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g - 2; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(1, 10) + k(4, 7); kii(t, t1) = ki(1, 10) + ki(4, 7); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 1; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(1, 4) + k(10, 7); kii(t, t1) = ki(1, 4) + ki(10, 7); 
        t = t1; t1 = t1 + 3; 
    end 
     
    % Pure Tx two nodes  
    t = 2; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
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        kk(t, t1) = k(2, 5) + k(11, 8); kii(t, t1) = ki(2, 5) + ki(11, 8); 
        kk(t, t2) = k(2, 11) + k(5, 8); kii(t, t2) = ki(2, 11) + ki(5, 8); 
        kk(t, t3) = k(2, 8); kii(t, t3) = ki(2, 8); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
  

 t = 3 * g - 1; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(2, 11) + k(5, 8); kii(t, t1) = ki(2, 11) + ki(5, 8); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 2; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(2, 5) + k(11, 8); kii(t, t1) = ki(2, 5) + ki(11, 8); 
        t = t1; t1 = t1 + 3; 
    end 
  
  % Pure Ty two nodes  
    t = 3; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(3, 6) + k(12, 9); kii(t, t1) = ki(3, 6) + ki(12, 9); 
        kk(t, t2) = k(3, 12) + k(6, 9); kii(t, t2) = ki(3, 12) + ki(6, 9); 
        kk(t, t3) = k(3, 9); kii(t, t3) = ki(3, 9); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(3, 12) + k(6, 9); kii(t, t1) = ki(3, 12) + ki(6, 9); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 3; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(3, 6) + k(12, 9); kii(t, t1) = ki(3, 6) + ki(12, 9); 
        t = t1; t1 = t1 + 3; 
    end 
     
    % Pure W two nodes back down 
    t = 4; t1 = t + 3 * (g - 1); t2 = t1 + 1; t3 = t1 + 2; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(4, 10); kii(t, t1) = ki(4, 10); 
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        kk(t + 1, t1) = k(5, 10); kii(t + 1, t1) = ki(5, 10); 
        kk(t + 2, t1) = k(6, 10); kii(t + 2, t1) = ki(6, 10); 
         
        kk(t + 1, t2) = k(5, 11); kii(t + 1, t2) = ki(5, 11); 
        kk(t + 2, t3) = k(6, 12); kii(t + 2, t3) = ki(6, 12); 
         
        kk(t, t2) = k(4, 11); kii(t, t2) = ki(4, 11); 
        kk(t, t3) = k(4, 12); kii(t, t3) = ki(4, 12); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
  

  
 % W-Tx W-Ty two nodes 
    t = 1; tx1 = t + 4; ty1 = t + 5; tx2 = t + 3 * g + 1; ty2 = t + 3 * g + 2; 
    tx3 = tx2 + 3; ty3 = ty2 + 3; 
    tt = t; ttx1 = tx1; tty1 = ty1; ttx2 = tx2; tty2 = ty2; 
    ttx3 = tx3; tty3 = ty3; 
     
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, tx1) = k(1, 5) + k(10, 8); kii(t, tx1) = ki(1, 5) + ki(10, 8); 
        kk(t + 1, tx1 - 1) = k(2, 4) + k(11, 7); kii(t + 1, tx1 - 1) = ki(2, 4) + ki(11, 7); 
        kk(t + 2, tx1 - 1) = k(3, 4) + k(12, 7); kii(t + 2, tx1 - 1) = ki(3, 4) + ki(12, 7); 
         
        kk(t, tx2) = k(1, 11) + k(4, 8); kii(t, tx2) = ki(1, 11) + ki(4, 8); 
        kk(t + 1, tx2 - 1) = k(2, 10) + k(5, 7); kii(t + 1, tx2 - 1) = ki(2, 10) + ki(5, 7); 
        kk(t + 2, tx2 - 1) = k(3, 10) + k(6, 7); kii(t + 2, tx2 - 1) = ki(3, 10) + ki(6, 7); 
         
        kk(t, tx3) = k(1, 8); kii(t, tx3) = ki(1, 8); 
        kk(t + 1, tx3 - 1) = k(2, 7); kii(t + 1, tx3 - 1) = ki(2, 7); 
        kk(t + 2, tx3 - 1) = k(3, 7); kii(t + 2, tx3 - 1) = ki(3, 7); 
         
        kk(t, ty1) = k(1, 6) + k(10, 9); kii(t, ty1) = ki(1, 6) + ki(10, 9); 
        kk(t, ty2) = k(1, 12) + k(4, 9); kii(t, ty2) = ki(1, 12) + ki(4, 9); 
        kk(t, ty3) = k(1, 9); kii(t, ty3) = ki(1, 9); 
        t = t + 3; tx1 = tx1 + 3; tx2 = tx2 + 3; tx3 = tx3 + 3; 
        ty1 = ty1 + 3; ty2 = ty2 + 3; ty3 = ty3 + 3; 
    end 
        t = tt + 3 * g; tx1 = ttx1 + 3 * g; tx2 = ttx2 + 3 * g; tx3 = ttx3 + 3 * g;  
        ty1 = tty1 + 3 * g; ty2 = tty2 + 3 * g; ty3 = tty3 + 3 * g; 
        tt = t; ttx1 = tx1; ttx2 = tx2; ttx3 = tx3; 
        tty1 = ty1; tty2 = ty2; tty3 = ty3; 
    end 
     
    t = 3 * g - 2; tx1 = t + 3 * g + 1; ty1 = t + 3 * g + 2; 
    for x = 1 : g - 1 
        kk(t, tx1) = k(1, 11) + k(4, 8); kii(t, tx1) = ki(1, 11) + ki(4, 8); 
        kk(t + 1, tx1 - 1) = k(5, 7) + k(2, 10); kii(t + 1, tx1 - 1) = ki(5, 7) + ki(2, 10); 
        kk(t + 2, tx1 - 1) = k(6, 7) + k(3, 10); kii(t + 2, tx1 - 1) = ki(6, 7) + ki(3, 10); 
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        kk(t, ty1) = k(1, 12) + k(4, 9); kii(t, ty1) = ki(1, 12) + ki(4, 9); 
        t = tx1 - 1; tx1 = tx1 + 3 * g; ty1 = ty1 + 3 * g; 
    end 
     
    t = n - 3 * g + 1; tx1 = t + 4; ty1 = t + 5; 
    for x = 1 : g - 1 
        kk(t, tx1) = k(1, 5) + k(10, 8); kii(t, tx1) = ki(1, 5) + ki(10, 8); 
        kk(t + 1, tx1 - 1) = k(11, 7) + k(2, 4); kii(t + 1, tx1 - 1) = ki(11, 7) + ki(2, 4); 
        kk(t + 2, tx1 - 1) = k(12, 7) + k(3, 4); kii(t + 2, tx1 - 1) = ki(12, 7) + ki(3, 4); 
         
        kk(t, ty1) = k(1, 6) + k(10, 9); kii(t, ty1) = ki(1, 6) + ki(10, 9); 
        t = tx1 - 1; tx1 = tx1 + 3; ty1 = ty1 + 3; 
    end 
         
% Boundary conditions  
t1 = n + 1; t2 = n + g; t3 = n + g + 1; t4 = n + 2 * g; t5 = n + 2 * g + 1; 
t6 = n + 3 * g; t7 = n + 3 * g + 1; t8 = n + 4 * g; 
f1 = 1; f2 = n - 3 * g + 1; f3 = 3 * g - 2; f4 = n - 2; 
  
%%Right boundary 
 x = f3; tt1 = t1; 
while x < f4 + 1 
%For x = f3 To f4 Step 3 * g 
    kk(x, t1) = k(1, 5) + k(10, 8); kii(x, t1) = ki(1, 5) + ki(10, 8); 
    kk(x + 1, t1) = k(2, 5) + k(11, 8);kii(x + 1, t1) = ki(2, 5) + ki(11, 8); 
    kk(x + 2, t1) = k(3, 5) + k(12, 8);kii(x + 2, t1) = ki(3, 5) + ki(12, 8); 
    x = x + 3 * g; 
t1 = t1 + 1; 
%end 
end 
 x = f3 + 3 * g ; t1 = tt1; 
while x < f4 + 1 
%For x = f3 + 3 * g To f4 Step 3 * g 
    kk(x, t1) = k(10, 5);kii(x, t1) = ki(10, 5); 
    kk(x + 1, t1) = k(11, 5);kii(x + 1, t1) = ki(11, 5); 
    kk(x + 2, t1) = k(12, 5);kii(x + 2, t1) = ki(12, 5); 
   % kk(t3, t3 + 1) = k(5, 8); 
    x = x + 3 * g; 
t1 = t1 + 1; 
%end 
end 
  
for x = n + 1 : n + g - 1 
kk(x, x + 1) = k(5, 8);kii(x, x + 1) = ki(5, 8); 
end 
  
x = f3; t1 = tt1 + 1; 
while x < f4 - 3 * g + 1 
%For x = f3 To f4 - 3 * g Step 3 * g 
    kk(x, t1) = k(1, 8);kii(x, t1) = ki(1, 8); 
    kk(x + 1, t1) = k(2, 8);kii(x + 1, t1) = ki(2, 8); 
    kk(x + 2, t1) = k(3, 8);kii(x + 2, t1) = ki(3, 8); 
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   x = x + 3 * g; 
t1 = t1 + 1; 
%end 
end 
  

  
%while x < n + 2 * g + 1 
for x = n + 1 : n + g 
%for x = n + 1; n + g 
    kk(x, x) = k(5, 5) + k(8, 8);kii(x, x) = ki(5, 5) + ki(8, 8); 
    %x = x + 1; 
%end 
end 
  
%%Bottom boundary 
  x = f2; tt3 = t3; 
while x < f4 + 1 
 

 

%For x = f2 To f4 Step 3 
    kk(x, t3) = k(1, 12) + k(4, 9);kii(x, t3) = ki(1, 12) + ki(4, 9); 
    kk(x + 1, t3) = k(2, 12) + k(5, 9);kii(x + 1, t3) = ki(2, 12) + ki(5, 9); 
    kk(x + 2, t3) = k(3, 12) + k(6, 9);kii(x + 2, t3) = ki(3, 12) + ki(6, 9); 
    x = x + 3; 
 t3 = t3 + 1; 
%end 
end 
   
  x = f2 + 3; t3 = tt3; 
while x < f4 + 1 
%For x = f2 + 3 To f4 Step 3 
    kk(x, t3) = k(4, 12);kii(x, t3) = ki(4, 12); 
    kk(x + 1, t3) = k(5, 12); kii(x + 1, t3) = ki(5, 12); 
    kk(x + 2, t3) = k(6, 12);kii(x + 2, t3) = ki(6, 12); 
  %  kk(t7, t7 + 1) = k(12, 9); 
    x = x + 3; 
 t3 = t3 + 1; 
%end 
end 
  
for x = n + g + 1 : nm - 1 
 kk(x, x + 1) = k(9, 12);kii(x, x + 1) = ki(9, 12); 
 end 
  
 x = f2; t3 = tt3 + 1; 
while x < f4 - 2 
%For x = f2 To f4 - 3 Step 3 
    kk(x, t3) = k(1, 9);kii(x, t3) = ki(1, 9); 
    kk(x + 1, t3) = k(2, 9);kii(x + 1, t3) = ki(2, 9); 
    kk(x + 2, t3) = k(3, 9);kii(x + 2, t3) = ki(3, 9); 
    x = x + 3; 
t3 = t3 + 1; 
%end 
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end 
  

  
%while x < nm + 1 
for x = n + g + 1 : nm 
%%for x = n + 1; n + g 
    kk(x, x) = k(9, 9) + k(12, 12);kii(x, x) = ki(9, 9) + ki(12, 12); 
   % x = x + 1; 
%end 
end 
  
%Complete the symmetry 
 for x = 1 : nm 
    for y = 1 : nm 
    kk(y, x) = kk(x, y); kii(y, x) = kii(x, y); 
    end 
 end 
  
%Load Vector 
  
x = 1; 
 

 

while x < n + 1 
%for x = 1 ; n Step 3 
    %%for x = 1 ; n - 2 Step 3 
        q(x) = 1; 
        q(x + 1) = 0; 
         q(x + 2) = 0; 
     x = x +3; 
%end 
end 
  
%right load 
for x = n  + 1 : n + g 
    q(x) = -0.0833333333333; 
end 
  
% bottom load 
 for x = n + g + 1 : n + 2 * g 
    q(x) = -0.0833333333333; 
 end 
  
  ncd = (n - 1) / 2; 
kgv = inv(kk);  
dd = kgv * transpose(q); 
dc = dd(ncd) *1000 / (1 + g) ^ 4; 
kki = inv(kii)* kk; 
ld = eig(kki)* (1 + g) ^ 4;  
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%ReDim kx(12, 12), kxy(12, 12), ky(12, 12), k(12, 12), ki(12, 12) 
for x = 1 : 12 
for y = 1 : 12 
k(x, y) = 0; kx(x, y) = 0; kxy(x, y) = 0; ky(x, y) = 0; 
end 
end 
af = input('WHAT IS THE aspect ratio, b/a?'); af = af * 1; 
kx(1, 1) = 4; kx(1, 2) = 2; kx(1, 3) = 0; kx(1, 4) = -4; kx(1, 5) = 2; kx(1, 6) = 0; kx(1, 7) = -2; kx(1, 8) = 1; kx(1, 

9) = 0; kx(1, 10) = 2; kx(1, 11) = 1; kx(1, 12) = 0; 
kx(2, 1) = 2; kx(2, 2) = 1.333333; kx(2, 3) = 0; kx(2, 4) = -2; kx(2, 5) = 0.6666667; kx(2, 6) = 0; kx(2, 7) = -1; 

kx(2, 8) = 0.333333; kx(2, 9) = 0; kx(2, 10) = 1; kx(2, 11) = 0.6666667; kx(2, 12) = 0; 
kx(3, 1) = 0; kx(3, 2) = 0; kx(3, 3) = 0; kx(3, 4) = 0; kx(3, 5) = 0; kx(3, 6) = 0; kx(3, 7) = 0; kx(3, 8) = 0; kx(3, 

9) = 0; kx(3, 10) = 0; kx(3, 11) = 0; kx(3, 12) = 0; 
kx(4, 1) = -4; kx(4, 2) = -2; kx(4, 3) = 0; kx(4, 4) = 4; kx(4, 5) = -2; kx(4, 6) = 0; kx(4, 7) = 2; kx(4, 8) = -1; 

kx(4, 9) = 0; kx(4, 10) = -2; kx(4, 11) = -1; kx(4, 12) = 0; 
kx(5, 1) = 2; kx(5, 2) = 0.6666667; kx(5, 3) = 0; kx(5, 4) = -2; kx(5, 5) = 1.3333333; kx(5, 6) = 0; kx(5, 7) = -1; 

kx(5, 8) = 0.6666667; kx(5, 9) = 0; kx(5, 10) = 1; kx(5, 11) = 0.3333333; kx(5, 12) = 0; 
kx(6, 1) = 0; kx(6, 2) = 0; kx(6, 3) = 0; kx(6, 4) = 0; kx(6, 5) = 0; kx(6, 6) = 0; kx(6, 7) = 0; kx(6, 8) = 0; kx(6, 

9) = 0; kx(6, 10) = 0; kx(6, 11) = 0; kx(6, 12) = 0; 
kx(7, 1) = -2; kx(7, 2) = -1; kx(7, 3) = 0; kx(7, 4) = 2; kx(7, 5) = -1; kx(7, 6) = 0; kx(7, 7) = 4; kx(7, 8) = -2; 

kx(7, 9) = 0; kx(7, 10) = -4; kx(7, 11) = -2; kx(7, 12) = 0; 
kx(8, 1) = 1; kx(8, 2) = 0.3333333; kx(8, 3) = 0; kx(8, 4) = -1; kx(8, 5) = 0.6666667; kx(8, 6) = 0; kx(8, 7) = -2; 

kx(8, 8) = 1.3333333; kx(8, 9) = 0; kx(8, 10) = 2; kx(8, 11) = 0.6666667; kx(8, 12) = 0; 
kx(9, 1) = 0; kx(9, 2) = 0; kx(9, 3) = 0; kx(9, 4) = 0; kx(9, 5) = 0; kx(9, 6) = 0; kx(9, 7) = 0; kx(9, 8) = 0; kx(9, 

9) = 0; kx(9, 10) = 0; kx(9, 11) = 0; kx(9, 12) = 0; 
kx(10, 1) = 2; kx(10, 2) = 1; kx(10, 3) = 0; kx(10, 4) = -2; kx(10, 5) = 1; kx(10, 6) = 0; kx(10, 7) = -4; kx(10, 8) 

= 2; kx(10, 9) = 0; kx(10, 10) = 4; kx(10, 11) = 2; kx(10, 12) = 0; 
kx(11, 1) = 1; kx(11, 2) = 0.6666667; kx(11, 3) = 0; kx(11, 4) = -1; kx(11, 5) = 0.3333333; kx(11, 6) = 0; kx(11, 

7) = -2; kx(11, 8) = 0.6666667; kx(11, 9) = 0; kx(11, 10) = 2; kx(11, 11) = 1.3333333; kx(11, 12) = 0; 
kx(12, 1) = 0; kx(12, 2) = 0; kx(12, 3) = 0; kx(12, 4) = 0; kx(12, 5) = 0; kx(12, 6) = 0; kx(12, 7) = 0; kx(12, 8) = 

0; kx(12, 9) = 0; kx(12, 10) = 0; kx(12, 11) = 0; kx(12, 12) = 0; 
  
  
ky(1, 1) = 4; ky(1, 2) = 0; ky(1, 3) = 2; ky(1, 4) = 2; ky(1, 5) = 0; ky(1, 6) = 1; ky(1, 7) = -2; ky(1, 8) = 0; ky(1, 

9) = 1; ky(1, 10) = -4; ky(1, 11) = 0; ky(1, 12) = 2; 
ky(2, 1) = 0; ky(2, 2) = 0; ky(2, 3) = 0; ky(2, 4) = 0; ky(2, 5) = 0; ky(2, 6) = 0; ky(2, 7) = 0; ky(2, 8) = 0; ky(2, 

9) = 0; ky(2, 10) = 0; ky(2, 11) = 0; ky(2, 12) = 0; 
ky(3, 1) = 2; ky(3, 2) = 0; ky(3, 3) = 1.3333333; ky(3, 4) = 1; ky(3, 5) = 0; ky(3, 6) = 0.6666667; ky(3, 7) = -1; 

ky(3, 8) = 0; ky(3, 9) = 0.3333333; ky(3, 10) = -2; ky(3, 11) = 0; ky(3, 12) = 0.6666667; 
ky(4, 1) = 2; ky(4, 2) = 0; ky(4, 3) = 1; ky(4, 4) = 4; ky(4, 5) = 0; ky(4, 6) = 2; ky(4, 7) = -4; ky(4, 8) = 0; ky(4, 

9) = 2; ky(4, 10) = -2; ky(4, 11) = 0; ky(4, 12) = 1; 
ky(5, 1) = 0; ky(5, 2) = 0; ky(5, 3) = 0; ky(5, 4) = 0; ky(5, 5) = 0; ky(5, 6) = 0; ky(5, 7) = 0; ky(5, 8) = 0; ky(5, 

9) = 0; ky(5, 10) = 0; ky(5, 11) = 0; ky(5, 12) = 0; 
ky(6, 1) = 1; ky(6, 2) = 0; ky(6, 3) = 0.6666667; ky(6, 4) = 2; ky(6, 5) = 0; ky(6, 6) = 1.3333333; ky(6, 7) = -2; 

ky(6, 8) = 0; ky(6, 9) = 0.6666667; ky(6, 10) = -1; ky(6, 11) = 0; ky(6, 12) = 0.3333333; 
ky(7, 1) = -2; ky(7, 2) = 0; ky(7, 3) = -1; ky(7, 4) = -4; ky(7, 5) = 0; ky(7, 6) = -2; ky(7, 7) = 4; ky(7, 8) = 0; 

ky(7, 9) = -2; ky(7, 10) = 2; ky(7, 11) = 0; ky(7, 12) = -1; 
ky(8, 1) = 0; ky(8, 2) = 0; ky(8, 3) = 0; ky(8, 4) = 0; ky(8, 5) = 0; ky(8, 6) = 0; ky(8, 7) = 0; ky(8, 8) = 0; ky(8, 

9) = 0; ky(8, 10) = 0; ky(8, 11) = 0; ky(8, 12) = 0; 
ky(9, 1) = 1; ky(9, 2) = 0; ky(9, 3) = 0.3333333; ky(9, 4) = 2; ky(9, 5) = 0; ky(9, 6) = 0.6666667; ky(9, 7) = -2; 

ky(9, 8) = 0; ky(9, 9) = 1.3333333; ky(9, 10) = -1; ky(9, 11) = 0; ky(9, 12) = 0.6666667; 
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ky(10, 1) = -4; ky(10, 2) = 0; ky(10, 3) = -2; ky(10, 4) = -2; ky(10, 5) = 0; ky(10, 6) = -1; ky(10, 7) = 2; ky(10, 

8) = 0; ky(10, 9) = -1; ky(10, 10) = 4; ky(10, 11) = 0; ky(10, 12) = -2; 
ky(11, 1) = 0; ky(11, 2) = 0; ky(11, 3) = 0; ky(11, 4) = 0; ky(11, 5) = 0; ky(11, 6) = 0; ky(11, 7) = 0; ky(11, 8) = 

0; ky(11, 9) = 0; ky(11, 10) = 0; ky(11, 11) = 0; ky(11, 12) = 0; 
ky(12, 1) = 2; ky(12, 2) = 0; ky(12, 3) = 0.6666667; ky(12, 4) = 1; ky(12, 5) = 0; ky(12, 6) = 0.3333333; ky(12, 

7) = -1; ky(12, 8) = 0; ky(12, 9) = 0.6666667; ky(12, 10) = -2; ky(12, 11) = 0; ky(12, 12) = 1.3333333; 
  
kxy(1, 1) = 2.8; kxy(1, 2) = 0.2; kxy(1, 3) = 0.2; kxy(1, 4) = -2.8; kxy(1, 5) = 0.2; kxy(1, 6) = -0.2; kxy(1, 7) = 

2.8; kxy(1, 8) = -0.2; kxy(1, 9) = -0.2; kxy(1, 10) = -2.8; kxy(1, 11) = -0.2; kxy(1, 12) = 0.2; 
kxy(2, 1) = 0.2; kxy(2, 2) = 0.2666667; kxy(2, 3) = 0; kxy(2, 4) = -0.2; kxy(2, 5) = -0.0666667; kxy(2, 6) = 0; 

kxy(2, 7) = 0.2; kxy(2, 8) = 0.0666667; kxy(2, 9) = 0; kxy(2, 10) = -0.2; kxy(2, 11) = -0.2666667; kxy(2, 12) = 

0; 
kxy(3, 1) = 0.2; kxy(3, 2) = 0; kxy(3, 3) = 0.2666667; kxy(3, 4) = -0.2; kxy(3, 5) = 0; kxy(3, 6) = -0.26666667; 

kxy(3, 7) = 0.2; kxy(3, 8) = 0; kxy(3, 9) = 0.0666667; kxy(3, 10) = -0.2; kxy(3, 11) = 0; kxy(3, 12) = -

0.0666667; 
kxy(4, 1) = -2.8; kxy(4, 2) = -0.2; kxy(4, 3) = -0.2; kxy(4, 4) = 2.8; kxy(4, 5) = -0.2; kxy(4, 6) = 0.2; kxy(4, 7) = 

-2.8; kxy(4, 8) = 0.2; kxy(4, 9) = 0.2; kxy(4, 10) = 2.8; kxy(4, 11) = 0.2; kxy(4, 12) = -0.2; 
kxy(5, 1) = 0.2; kxy(5, 2) = -0.0666667; kxy(5, 3) = 0; kxy(5, 4) = -0.2; kxy(5, 5) = 0.2666667; kxy(5, 6) = 0; 

kxy(5, 7) = 0.2; kxy(5, 8) = -0.2666667; kxy(5, 9) = 0; kxy(5, 10) = -0.2; kxy(5, 11) = 0.0666667; kxy(5, 12) = 

0; 
kxy(6, 1) = -0.2; kxy(6, 2) = 0; kxy(6, 3) = -0.2666667; kxy(6, 4) = 0.2; kxy(6, 5) = 0; kxy(6, 6) = 0.2666667; 

kxy(6, 7) = -0.2; kxy(6, 8) = 0; kxy(6, 9) = -0.0666667; kxy(6, 10) = 0.2; kxy(6, 11) = 0; kxy(6, 12) = 

0.0666667; 
kxy(7, 1) = 2.8; kxy(7, 2) = 0.2; kxy(7, 3) = 0.2; kxy(7, 4) = -2.8; kxy(7, 5) = 0.2; kxy(7, 6) = -0.2; kxy(7, 7) = 

2.8; kxy(7, 8) = -0.2; kxy(7, 9) = -0.2; kxy(7, 10) = -2.8; kxy(7, 11) = -0.2; kxy(7, 12) = 0.2; 
kxy(8, 1) = -0.2; kxy(8, 2) = 0.06666667; kxy(8, 3) = 0; kxy(8, 4) = 0.2; kxy(8, 5) = -0.2666667; kxy(8, 6) = 0; 

kxy(8, 7) = -0.2; kxy(8, 8) = 0.2666667; kxy(8, 9) = 0; kxy(8, 10) = 0.2; kxy(8, 11) = -0.0666667; kxy(8, 12) = 

0; 
kxy(9, 1) = -0.2; kxy(9, 2) = 0; kxy(9, 3) = 0.0666667; kxy(9, 4) = 0.2; kxy(9, 5) = 0; kxy(9, 6) = -0.0666667; 

kxy(9, 7) = -0.2; kxy(9, 8) = 0; kxy(9, 9) = 0.2666667; kxy(9, 10) = 0.2; kxy(9, 11) = 0; kxy(9, 12) = -

0.2666667; 
kxy(10, 1) = -2.8; kxy(10, 2) = -0.2; kxy(10, 3) = -0.2; kxy(10, 4) = 2.8; kxy(10, 5) = -0.2; kxy(10, 6) = 0.2; 

kxy(10, 7) = -2.8; kxy(10, 8) = 0.2; kxy(10, 9) = 0.2; kxy(10, 10) = 2.8; kxy(10, 11) = 0.2; kxy(10, 12) = -0.2; 
kxy(11, 1) = -0.2; kxy(11, 2) = -0.2666667; kxy(11, 3) = 0; kxy(11, 4) = 0.2; kxy(11, 5) = 0.0666667; kxy(11, 6) 

= 0; kxy(11, 7) = -0.2; kxy(11, 8) = -0.0666667; kxy(11, 9) = 0; kxy(11, 10) = 0.2; kxy(11, 11) = 0.2666667; 

kxy(11, 12) = 0; 
kxy(12, 1) = 0.2; kxy(12, 2) = 0; kxy(12, 3) = -0.0666667; kxy(12, 4) = -0.2; kxy(12, 5) = 0; kxy(12, 6) = 

0.0666667; kxy(12, 7) = 0.2; kxy(12, 8) = 0; kxy(12, 9) = -0.2666667; kxy(12, 10) = -0.2; kxy(12, 11) = 0; 

kxy(12, 12) = 0.2666667; 
  
%' Inertia matrix 
ki(1, 1) = 0.13706; ki(1, 2) = 0.01829; ki(1, 3) = 0.01829; ki(1, 4) = 0.04865; ki(1, 5) = -0.01087; ki(1, 6) = 

0.0079; ki(1, 7) = 0.01563; ki(1, 8) = -0.0046; ki(1, 9) = -0.0046; ki(1, 10) = 0.04865; ki(1, 11) = 0.0079; ki(1, 

12) = -0.01087; 
ki(2, 1) = 0.01829; ki(2, 2) = 0.00317; ki(2, 3) = 0.0025; ki(2, 4) = 0.01087; ki(2, 5) = -0.00238; ki(2, 6) = 

0.00167; ki(2, 7) = 0.0046; ki(2, 8) = -0.00119; ki(2, 9) = -0.00111; ki(2, 10) = 0.0079; ki(2, 11) = 0.00159; 

ki(2, 12) = -0.00167; 
ki(3, 1) = 0.01829; ki(3, 2) = 0.0025; ki(3, 3) = 0.00317; ki(3, 4) = 0.0079; ki(3, 5) = -0.00167; ki(3, 6) = 

0.00159; ki(3, 7) = 0.0046; ki(3, 8) = -0.00111; ki(3, 9) = -0.00119; ki(3, 10) = 0.01087; ki(3, 11) = 0.00167; 

ki(3, 12) = -0.00238; 
ki(4, 1) = 0.04865; ki(4, 2) = 0.01087; ki(4, 3) = 0.0079; ki(4, 4) = 0.13706; ki(4, 5) = -0.01829; ki(4, 6) = 

0.01829; ki(4, 7) = 0.04865; ki(4, 8) = -0.0079; ki(4, 9) = -0.01087; ki(4, 10) = 0.01563; ki(4, 11) = 0.0046; 

ki(4, 12) = -0.0046; 
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ki(5, 1) = -0.01087; ki(5, 2) = -0.00238; ki(5, 3) = -0.00167; ki(5, 4) = -0.01829; ki(5, 5) = 0.00317; ki(5, 6) = -

0.0025; ki(5, 7) = -0.0079; ki(5, 8) = 0.00159; ki(5, 9) = 0.00167; ki(5, 10) = -0.0046; ki(5, 11) = -0.00119; ki(5, 

12) = 0.00111; 
ki(6, 1) = 0.0079; ki(6, 2) = 0.00167; ki(6, 3) = 0.00159; ki(6, 4) = 0.01829; ki(6, 5) = -0.0025; ki(6, 6) = 

0.00317; ki(6, 7) = 0.01087; ki(6, 8) = -0.00167; ki(6, 9) = -0.00238; ki(6, 10) = 0.0046; ki(6, 11) = 0.00111; 

ki(6, 12) = -0.00119; 
ki(7, 1) = 0.01563; ki(7, 2) = 0.0046; ki(7, 3) = 0.0046; ki(7, 4) = 0.04865; ki(7, 5) = -0.0079; ki(7, 6) = 

0.01087; ki(7, 7) = 0.13706; ki(7, 8) = -0.01829; ki(7, 9) = -0.01829; ki(7, 10) = 0.04865; ki(7, 11) = 0.01087; 

ki(7, 12) = -0.0079; 
ki(8, 1) = -0.0046; ki(8, 2) = -0.00119; ki(8, 3) = -0.00111; ki(8, 4) = -0.0079; ki(8, 5) = 0.00159; ki(8, 6) = -

0.00167; ki(8, 7) = -0.01829; ki(8, 8) = 0.00317; ki(8, 9) = 0.0025; ki(8, 10) = -0.01087; ki(8, 11) = -0.00238; 

ki(8, 12) = 0.00167; 
ki(9, 1) = -0.0046; ki(9, 2) = -0.00111; ki(9, 3) = -0.00119; ki(9, 4) = -0.01087; ki(9, 5) = 0.00167; ki(9, 6) = -

0.00238; ki(9, 7) = -0.01829; ki(9, 8) = 0.0025; ki(9, 9) = 0.00317; ki(9, 10) = -0.0079; ki(9, 11) = -0.00167; 

ki(9, 12) = 0.00159; 
ki(10, 1) = 0.04865; ki(10, 2) = 0.0079; ki(10, 3) = 0.01087; ki(10, 4) = 0.01563; ki(10, 5) = -0.0046; ki(10, 6) = 

0.0046; ki(10, 7) = 0.04865; ki(10, 8) = -0.01087; ki(10, 9) = -0.0079; ki(10, 10) = 0.13706; ki(10, 11) = 

0.01829; ki(10, 12) = -0.01829; 
ki(11, 1) = 0.0079; ki(11, 2) = 0.00159; ki(11, 3) = 0.00167; ki(11, 4) = 0.0046; ki(11, 5) = -0.00119; ki(11, 6) = 

0.00111; ki(11, 7) = 0.01087; ki(11, 8) = -0.00238; ki(11, 9) = -0.00167; ki(11, 10) = 0.01829; ki(11, 11) = 

0.00317; ki(11, 12) = -0.0025; 
ki(12, 1) = -0.01087; ki(12, 2) = -0.00167; ki(12, 3) = -0.00238; ki(12, 4) = -0.0046; ki(12, 5) = 0.00111; ki(12, 

6) = -0.00119; ki(12, 7) = -0.0079; ki(12, 8) = 0.00167; ki(12, 9) = 0.00159; ki(12, 10) = -0.01829; ki(12, 11) = 

-0.0025; ki(12, 12) = 0.00317; 
  
  
for x = 1 : 12 
for y = 1 : 12 
k(x, y) = k(x, y) + kx(x, y) + kxy(x, y) / af ^ 2 + ky(x, y) / af ^ 4; 
end 
end 
  

  
%'TYP = InputBox("WHAT TYPE OF PLATE? 1 for SSSS, 2 for CCCC, 3 for CSCS, 4 for CCSS, 5 for 

CCCS, 6 for CSSS"); TYP = TYP * 1 
g = input('WHAT IS THE SIZE OF THE GRID 3,5,7 etc?'); g = g * 1;  
n = 3 * (g ^ 2); NN = (g + 2 + g) * 2; m = 3; mm = 3 * g; nm = n + 2 * g;  
%ReDim kk(nm, nm), q(nm), kki(nm, nm), kii(nm, nm) 
for x = 1 : nm 
for y = 1 : nm 
 kk(x, y) = 0; kii(x, y) = 0; kki(x, y) = 0; 
 end 
 end 
  
% STIFFNESS for PURE W one node 
    x = 1; 
    %for x = 1 : n - 2 Step 3 
    while x < n - 1 
        kk(x, x) = 4 * k(1, 1); kii(x, x) = 4 * ki(1, 1); 
        x = x + 3; 
    end 
% Pure Tx one node 
    x = 2; 
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  % for x = 2 : n - 1 Step 3 
    while x < n 
        kk(x, x) = 4 * k(2, 2); kii(x, x) = 4 * ki(2, 2); 
        x = x + 3; 
     end 
 

% Pure Ty one node 
    x = 3; 
    % for x = 3 : n Step 3 
    while x < n + 1 
        kk(x, x) = 4 * k(3, 3); kii(x, x) = 4 * ki(3, 3); 
        x = x + 3; 
     end 
  
% Pure W-Tx; W-Ty one node 
    x = 3; 
    %for x = 3 : n - 2 Step 3 
    while x < n - 1 
        kk(x, x + 1) = 0; kii(x, x + 1) = 0; 
        kk(x, x + 2) = 0; kii(x, x + 2) = 0; 
        x = x + 3; 
     end 
% Pure W two nodes  
    t = 1; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(1, 4) + k(10, 7); kii(t, t1) = ki(1, 4) + ki(10, 7); 
        kk(t, t2) = k(1, 10) + k(4, 7); kii(t, t2) = ki(1, 10) + ki(4, 7); 
        kk(t, t3) = k(1, 7); kii(t, t3) = ki(1, 7); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g - 2; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(1, 10) + k(4, 7); kii(t, t1) = ki(1, 10) + ki(4, 7); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 1; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(1, 4) + k(10, 7); kii(t, t1) = ki(1, 4) + ki(10, 7); 
        t = t1; t1 = t1 + 3; 
    end 
     
    % Pure Tx two nodes  
    t = 2; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(2, 5) + k(11, 8); kii(t, t1) = ki(2, 5) + ki(11, 8); 



 

123 
 

       APENDIX C 
 

 
MATLAB Program Formulated for CSCS Boundary Condition 

 

        kk(t, t2) = k(2, 11) + k(5, 8); kii(t, t2) = ki(2, 11) + ki(5, 8); 
        kk(t, t3) = k(2, 8); kii(t, t3) = ki(2, 8); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
 
    

 t = 3 * g - 1; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(2, 11) + k(5, 8); kii(t, t1) = ki(2, 11) + ki(5, 8); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 2; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(2, 5) + k(11, 8); kii(t, t1) = ki(2, 5) + ki(11, 8); 
        t = t1; t1 = t1 + 3; 
    end 
  
  % Pure Ty two nodes  
    t = 3; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(3, 6) + k(12, 9); kii(t, t1) = ki(3, 6) + ki(12, 9); 
        kk(t, t2) = k(3, 12) + k(6, 9); kii(t, t2) = ki(3, 12) + ki(6, 9); 
        kk(t, t3) = k(3, 9); kii(t, t3) = ki(3, 9); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(3, 12) + k(6, 9); kii(t, t1) = ki(3, 12) + ki(6, 9); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 3; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(3, 6) + k(12, 9); kii(t, t1) = ki(3, 6) + ki(12, 9); 
        t = t1; t1 = t1 + 3; 
    end 
     
    % Pure W two nodes back down 
    t = 4; t1 = t + 3 * (g - 1); t2 = t1 + 1; t3 = t1 + 2; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(4, 10); kii(t, t1) = ki(4, 10); 
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        kk(t + 1, t1) = k(5, 10); kii(t + 1, t1) = ki(5, 10); 
        kk(t + 2, t1) = k(6, 10); kii(t + 2, t1) = ki(6, 10); 
         
        kk(t + 1, t2) = k(5, 11); kii(t + 1, t2) = ki(5, 11); 
        kk(t + 2, t3) = k(6, 12); kii(t + 2, t3) = ki(6, 12); 
         
        kk(t, t2) = k(4, 11); kii(t, t2) = ki(4, 11); 
        kk(t, t3) = k(4, 12); kii(t, t3) = ki(4, 12); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
 

   end 
  
  
 % W-Tx W-Ty two nodes 
    t = 1; tx1 = t + 4; ty1 = t + 5; tx2 = t + 3 * g + 1; ty2 = t + 3 * g + 2; 
    tx3 = tx2 + 3; ty3 = ty2 + 3; 
    tt = t; ttx1 = tx1; tty1 = ty1; ttx2 = tx2; tty2 = ty2; 
    ttx3 = tx3; tty3 = ty3; 
     
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, tx1) = k(1, 5) + k(10, 8); kii(t, tx1) = ki(1, 5) + ki(10, 8); 
        kk(t + 1, tx1 - 1) = k(2, 4) + k(11, 7); kii(t + 1, tx1 - 1) = ki(2, 4) + ki(11, 7); 
        kk(t + 2, tx1 - 1) = k(3, 4) + k(12, 7); kii(t + 2, tx1 - 1) = ki(3, 4) + ki(12, 7); 
         
        kk(t, tx2) = k(1, 11) + k(4, 8); kii(t, tx2) = ki(1, 11) + ki(4, 8); 
        kk(t + 1, tx2 - 1) = k(2, 10) + k(5, 7); kii(t + 1, tx2 - 1) = ki(2, 10) + ki(5, 7); 
        kk(t + 2, tx2 - 1) = k(3, 10) + k(6, 7); kii(t + 2, tx2 - 1) = ki(3, 10) + ki(6, 7); 
         
        kk(t, tx3) = k(1, 8); kii(t, tx3) = ki(1, 8); 
        kk(t + 1, tx3 - 1) = k(2, 7); kii(t + 1, tx3 - 1) = ki(2, 7); 
        kk(t + 2, tx3 - 1) = k(3, 7); kii(t + 2, tx3 - 1) = ki(3, 7); 
         
        kk(t, ty1) = k(1, 6) + k(10, 9); kii(t, ty1) = ki(1, 6) + ki(10, 9); 
        kk(t, ty2) = k(1, 12) + k(4, 9); kii(t, ty2) = ki(1, 12) + ki(4, 9); 
        kk(t, ty3) = k(1, 9); kii(t, ty3) = ki(1, 9); 
        t = t + 3; tx1 = tx1 + 3; tx2 = tx2 + 3; tx3 = tx3 + 3; 
        ty1 = ty1 + 3; ty2 = ty2 + 3; ty3 = ty3 + 3; 
    end 
        t = tt + 3 * g; tx1 = ttx1 + 3 * g; tx2 = ttx2 + 3 * g; tx3 = ttx3 + 3 * g; 
        ty1 = tty1 + 3 * g; ty2 = tty2 + 3 * g; ty3 = tty3 + 3 * g; 
        tt = t; ttx1 = tx1; ttx2 = tx2; ttx3 = tx3; 
        tty1 = ty1; tty2 = ty2; tty3 = ty3; 
    end 
     
    t = 3 * g - 2; tx1 = t + 3 * g + 1; ty1 = t + 3 * g + 2; 
    for x = 1 : g - 1 
        kk(t, tx1) = k(1, 11) + k(4, 8); kii(t, tx1) = ki(1, 11) + ki(4, 8); 
        kk(t + 1, tx1 - 1) = k(5, 7) + k(2, 10); kii(t + 1, tx1 - 1) = ki(5, 7) + ki(2, 10); 
        kk(t + 2, tx1 - 1) = k(6, 7) + k(3, 10); kii(t + 2, tx1 - 1) = ki(6, 7) + ki(3, 10); 
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        kk(t, ty1) = k(1, 12) + k(4, 9); kii(t, ty1) = ki(1, 12) + ki(4, 9); 
        t = tx1 - 1; tx1 = tx1 + 3 * g; ty1 = ty1 + 3 * g; 
    end 
     
    t = n - 3 * g + 1; tx1 = t + 4; ty1 = t + 5; 
    for x = 1 : g - 1 
        kk(t, tx1) = k(1, 5) + k(10, 8); kii(t, tx1) = ki(1, 5) + ki(10, 8); 
        kk(t + 1, tx1 - 1) = k(11, 7) + k(2, 4); kii(t + 1, tx1 - 1) = ki(11, 7) + ki(2, 4); 
        kk(t + 2, tx1 - 1) = k(12, 7) + k(3, 4); kii(t + 2, tx1 - 1) = ki(12, 7) + ki(3, 4); 
         
        kk(t, ty1) = k(1, 6) + k(10, 9); kii(t, ty1) = ki(1, 6) + ki(10, 9); 
        t = tx1 - 1; tx1 = tx1 + 3; ty1 = ty1 + 3; 
    end 
       
% Boundary conditions  
t1 = n + 1; t2 = n + g; t3 = n + g + 1; t4 = n + 2 * g; t5 = n + 2 * g + 1;  
t6 = n + 3 * g; t7 = n + 3 * g + 1; t8 = n + 4 * g; 
f1 = 1; f2 = n - 3 * g + 1; f3 = 3 * g - 2; f4 = n - 2; 
%left boundary 
x = 1; tt1 = t1; 
while x < f2 + 1 
%for x = 1 : f2 Step 3 * g 
    kk(x, t1) = k(4, 2) + k(7, 11); kii(x, t1) = ki(4, 2) + ki(7, 11); 
    kk(x + 1, t1) = k(5, 2) + k(8, 11); kii(x + 1, t1) = ki(5, 2) + ki(8, 11); 
    kk(x + 2, t1) = k(6, 2) + k(9, 11); kii(x + 2, t1) = ki(6, 2) + ki(9, 11); 
   x = x + 3 * g; 
  t1 = t1 + 1; 
%end 
end 
 x = 3 * g + 1; t1 = tt1; 
while x < f2 + 1 
%for x = 3 * g + 1 : f2 Step 3 * g 
    kk(x, t1) = k(7, 2); kii(x, t1) = ki(7, 2); 
    kk(x + 1, t1) = k(8, 2); kii(x + 1, t1) = ki(8, 2); 
    kk(x + 2, t1) = k(9, 2); kii(x + 2, t1) = ki(9, 2); 
    %kk(t1, t1 + 1) = k(2, 11); 
   x = x + 3 * g; 
   t1 = t1 + 1; 
%end 
end 
  
for x = n + 1 : n + g - 1 
kk(x, x + 1) = k(2, 11); kii(x, x + 1) = ki(2, 11); 
end 
  
x = 1; t1 = tt1 + 1; 
while x < f2 - 3 * g + 1 
%for x = 1 : f2 - 3 * g Step 3 * g 
    kk(x, t1) = k(4, 11); kii(x, t1) = ki(4, 11); 
    kk(x + 1, t1) = k(5, 11); kii(x + 1, t1) = ki(5, 11); 
    kk(x + 2, t1) = k(6, 11); kii(x + 2, t1) = ki(6, 11); 
    x = x + 3 * g; 
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t1 = t1 + 1; 
%end 
end 
x = n + 1 ; 
while x < n + g + 1 
%for x = n + 1 : n + g 
%%for x = n + 1; n + g 
    kk(x, x) = k(2, 2) + k(11, 11); kii(x, x) = ki(2, 2) + ki(11, 11); 
    x = x + 1; 
%end 
end 
  
%%Right boundary 
 x = f3; tt3 = t3; 
while x < f4 + 1 
%for x = f3 : f4 Step 3 * g 
    kk(x, t3) = k(1, 5) + k(10, 8); kii(x, t3) = ki(1, 5) + ki(10, 8); 
    kk(x + 1, t3) = k(2, 5) + k(11, 8); kii(x + 1, t3) = ki(2, 5) + ki(11, 8); 
    kk(x + 2, t3) = k(3, 5) + k(12, 8); kii(x + 2, t3) = ki(3, 5) + ki(12, 8); 
    x = x + 3 * g; 
t3 = t3 + 1; 
%end 
end 
 x = f3 + 3 * g; t3 = tt3; 
while x < f4 + 1 
%for x = f3 + 3 * g : f4 Step 3 * g 
    kk(x, t3) = k(10, 5); kii(x, t3) = ki(10, 5); 
    kk(x + 1, t3) = k(11, 5); kii(x + 1, t3) = ki(11, 5); 
    kk(x + 2, t3) = k(12, 5); kii(x + 2, t3) = ki(12, 5); 
   % kk(t3, t3 + 1) = k(5, 8); 
   x = x + 3 * g; 
t3 = t3 + 1; 
%end 
end 
  
for x = n + g + 1 : n + 2 * g - 1 
kk(x, x + 1) = k(5, 8); kii(x, x + 1) = ki(5, 8); 
end 
  
x = f3; t3 = tt3 + 1; 
while x < f4 - 3 * g + 1 
%for x = f3 : f4 - 3 * g Step 3 * g 
    kk(x, t3) = k(1, 8); kii(x, t3) = ki(1, 8); 
    kk(x + 1, t3) = k(2, 8); kii(x + 1, t3) = ki(2, 8); 
    kk(x + 2, t3) = k(3, 8); kii(x + 2, t3) = ki(3, 8); 
   x = x + 3 * g; 
t3 = t3 + 1; 
%end 
end 
  

  
%while x < n + 2 * g + 1 
for x = n + g + 1 : n + 2 * g 
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%for x = n + 1; n + g 
    kk(x, x) = k(5, 5) + k(8, 8); kii(x, x) = ki(5, 5) + ki(8, 8); 
    %x = x + 1; 
%end 
end 
  
%Complete the symmetry 
 for x = 1 : nm 
    for y = 1 : nm 
    kk(y, x) = kk(x, y); kii(y, x) = kii(x, y); 
    end 
 end 
  
%Load Vector 
  
x = 1; 
while x < n + 1 
%for x = 1 : n Step 3 
    %%for x = 1 : n - 2 Step 3 
        q(x) = 1; 
        q(x + 1) = 0; 
        q(x + 2) = 0; 
     x = x +3; 
%end 
end 
% left load 
for x = n + 1 : n + g 
    q(x) = 0.0833333333333; 
end 
%right load 
for x = n + g + 1 : n + 2 * g 
    q(x) = -0.0833333333333; 
end 
  
  ncd = (n - 1) / 2; 
kgv = inv(kk); 
dd = kgv * transpose(q); 
dc = dd(ncd) *1000 / (1 + g) ^ 4; 
kki = inv(kii)* kk; 
ld = eig(kki)* (1 + g) ^ 4;  
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%ReDim kx(12, 12), kxy(12, 12), ky(12, 12), k(12, 12), ki(12, 12) 
for x = 1 : 12 
for y = 1 : 12 
k(x, y) = 0; kx(x, y) = 0; kxy(x, y) = 0; ky(x, y) = 0; 
end 
end 
af = input('WHAT IS THE aspect ratio, b/a?'); af = af * 1; 
kx(1, 1) = 4; kx(1, 2) = 2; kx(1, 3) = 0; kx(1, 4) = -4; kx(1, 5) = 2; kx(1, 6) = 0; kx(1, 7) = -2; kx(1, 8) = 1; kx(1, 

9) = 0; kx(1, 10) = 2; kx(1, 11) = 1; kx(1, 12) = 0; 
kx(2, 1) = 2; kx(2, 2) = 1.333333; kx(2, 3) = 0; kx(2, 4) = -2; kx(2, 5) = 0.6666667; kx(2, 6) = 0; kx(2, 7) = -1; 

kx(2, 8) = 0.333333; kx(2, 9) = 0; kx(2, 10) = 1; kx(2, 11) = 0.6666667; kx(2, 12) = 0; 
kx(3, 1) = 0; kx(3, 2) = 0; kx(3, 3) = 0; kx(3, 4) = 0; kx(3, 5) = 0; kx(3, 6) = 0; kx(3, 7) = 0; kx(3, 8) = 0; kx(3, 

9) = 0; kx(3, 10) = 0; kx(3, 11) = 0; kx(3, 12) = 0; 
kx(4, 1) = -4; kx(4, 2) = -2; kx(4, 3) = 0; kx(4, 4) = 4; kx(4, 5) = -2; kx(4, 6) = 0; kx(4, 7) = 2; kx(4, 8) = -1; 

kx(4, 9) = 0; kx(4, 10) = -2; kx(4, 11) = -1; kx(4, 12) = 0; 
kx(5, 1) = 2; kx(5, 2) = 0.6666667; kx(5, 3) = 0; kx(5, 4) = -2; kx(5, 5) = 1.3333333; kx(5, 6) = 0; kx(5, 7) = -1; 

kx(5, 8) = 0.6666667; kx(5, 9) = 0; kx(5, 10) = 1; kx(5, 11) = 0.3333333; kx(5, 12) = 0; 
kx(6, 1) = 0; kx(6, 2) = 0; kx(6, 3) = 0; kx(6, 4) = 0; kx(6, 5) = 0; kx(6, 6) = 0; kx(6, 7) = 0; kx(6, 8) = 0; kx(6, 

9) = 0; kx(6, 10) = 0; kx(6, 11) = 0; kx(6, 12) = 0; 
kx(7, 1) = -2; kx(7, 2) = -1; kx(7, 3) = 0; kx(7, 4) = 2; kx(7, 5) = -1; kx(7, 6) = 0; kx(7, 7) = 4; kx(7, 8) = -2; 

kx(7, 9) = 0; kx(7, 10) = -4; kx(7, 11) = -2; kx(7, 12) = 0; 
kx(8, 1) = 1; kx(8, 2) = 0.3333333; kx(8, 3) = 0; kx(8, 4) = -1; kx(8, 5) = 0.6666667; kx(8, 6) = 0; kx(8, 7) = -2; 

kx(8, 8) = 1.3333333; kx(8, 9) = 0; kx(8, 10) = 2; kx(8, 11) = 0.6666667; kx(8, 12) = 0; 
kx(9, 1) = 0; kx(9, 2) = 0; kx(9, 3) = 0; kx(9, 4) = 0; kx(9, 5) = 0; kx(9, 6) = 0; kx(9, 7) = 0; kx(9, 8) = 0; kx(9, 

9) = 0; kx(9, 10) = 0; kx(9, 11) = 0; kx(9, 12) = 0; 
kx(10, 1) = 2; kx(10, 2) = 1; kx(10, 3) = 0; kx(10, 4) = -2; kx(10, 5) = 1; kx(10, 6) = 0; kx(10, 7) = -4; kx(10, 8) 

= 2; kx(10, 9) = 0; kx(10, 10) = 4; kx(10, 11) = 2; kx(10, 12) = 0; 
kx(11, 1) = 1; kx(11, 2) = 0.6666667; kx(11, 3) = 0; kx(11, 4) = -1; kx(11, 5) = 0.3333333; kx(11, 6) = 0; kx(11, 

7) = -2; kx(11, 8) = 0.6666667; kx(11, 9) = 0; kx(11, 10) = 2; kx(11, 11) = 1.3333333; kx(11, 12) = 0; 
kx(12, 1) = 0; kx(12, 2) = 0; kx(12, 3) = 0; kx(12, 4) = 0; kx(12, 5) = 0; kx(12, 6) = 0; kx(12, 7) = 0; kx(12, 8) = 

0; kx(12, 9) = 0; kx(12, 10) = 0; kx(12, 11) = 0; kx(12, 12) = 0; 
  
  
ky(1, 1) = 4; ky(1, 2) = 0; ky(1, 3) = 2; ky(1, 4) = 2; ky(1, 5) = 0; ky(1, 6) = 1; ky(1, 7) = -2; ky(1, 8) = 0; ky(1, 

9) = 1; ky(1, 10) = -4; ky(1, 11) = 0; ky(1, 12) = 2; 
ky(2, 1) = 0; ky(2, 2) = 0; ky(2, 3) = 0; ky(2, 4) = 0; ky(2, 5) = 0; ky(2, 6) = 0; ky(2, 7) = 0; ky(2, 8) = 0; ky(2, 

9) = 0; ky(2, 10) = 0; ky(2, 11) = 0; ky(2, 12) = 0; 
ky(3, 1) = 2; ky(3, 2) = 0; ky(3, 3) = 1.3333333; ky(3, 4) = 1; ky(3, 5) = 0; ky(3, 6) = 0.6666667; ky(3, 7) = -1; 

ky(3, 8) = 0; ky(3, 9) = 0.3333333; ky(3, 10) = -2; ky(3, 11) = 0; ky(3, 12) = 0.6666667; 
ky(4, 1) = 2; ky(4, 2) = 0; ky(4, 3) = 1; ky(4, 4) = 4; ky(4, 5) = 0; ky(4, 6) = 2; ky(4, 7) = -4; ky(4, 8) = 0; ky(4, 

9) = 2; ky(4, 10) = -2; ky(4, 11) = 0; ky(4, 12) = 1; 
ky(5, 1) = 0; ky(5, 2) = 0; ky(5, 3) = 0; ky(5, 4) = 0; ky(5, 5) = 0; ky(5, 6) = 0; ky(5, 7) = 0; ky(5, 8) = 0; ky(5, 

9) = 0; ky(5, 10) = 0; ky(5, 11) = 0; ky(5, 12) = 0; 
ky(6, 1) = 1; ky(6, 2) = 0; ky(6, 3) = 0.6666667; ky(6, 4) = 2; ky(6, 5) = 0; ky(6, 6) = 1.3333333; ky(6, 7) = -2; 

ky(6, 8) = 0; ky(6, 9) = 0.6666667; ky(6, 10) = -1; ky(6, 11) = 0; ky(6, 12) = 0.3333333; 
ky(7, 1) = -2; ky(7, 2) = 0; ky(7, 3) = -1; ky(7, 4) = -4; ky(7, 5) = 0; ky(7, 6) = -2; ky(7, 7) = 4; ky(7, 8) = 0; 

ky(7, 9) = -2; ky(7, 10) = 2; ky(7, 11) = 0; ky(7, 12) = -1; 
ky(8, 1) = 0; ky(8, 2) = 0; ky(8, 3) = 0; ky(8, 4) = 0; ky(8, 5) = 0; ky(8, 6) = 0; ky(8, 7) = 0; ky(8, 8) = 0; ky(8, 

9) = 0; ky(8, 10) = 0; ky(8, 11) = 0; ky(8, 12) = 0; 
ky(9, 1) = 1; ky(9, 2) = 0; ky(9, 3) = 0.3333333; ky(9, 4) = 2; ky(9, 5) = 0; ky(9, 6) = 0.6666667; ky(9, 7) = -2; 

ky(9, 8) = 0; ky(9, 9) = 1.3333333; ky(9, 10) = -1; ky(9, 11) = 0; ky(9, 12) = 0.6666667; 
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 ky(10, 1) = -4; ky(10, 2) = 0; ky(10, 3) = -2; ky(10, 4) = -2; ky(10, 5) = 0; ky(10, 6) = -1; ky(10, 7) = 2; ky(10, 

8) = 0; ky(10, 9) = -1; ky(10, 10) = 4; ky(10, 11) = 0; ky(10, 12) = -2; 
ky(11, 1) = 0; ky(11, 2) = 0; ky(11, 3) = 0; ky(11, 4) = 0; ky(11, 5) = 0; ky(11, 6) = 0; ky(11, 7) = 0; ky(11, 8) = 

0; ky(11, 9) = 0; ky(11, 10) = 0; ky(11, 11) = 0; ky(11, 12) = 0; 
ky(12, 1) = 2; ky(12, 2) = 0; ky(12, 3) = 0.6666667; ky(12, 4) = 1; ky(12, 5) = 0; ky(12, 6) = 0.3333333; ky(12, 

7) = -1; ky(12, 8) = 0; ky(12, 9) = 0.6666667; ky(12, 10) = -2; ky(12, 11) = 0; ky(12, 12) = 1.3333333; 
  
kxy(1, 1) = 2.8; kxy(1, 2) = 0.2; kxy(1, 3) = 0.2; kxy(1, 4) = -2.8; kxy(1, 5) = 0.2; kxy(1, 6) = -0.2; kxy(1, 7) = 

2.8; kxy(1, 8) = -0.2; kxy(1, 9) = -0.2; kxy(1, 10) = -2.8; kxy(1, 11) = -0.2; kxy(1, 12) = 0.2; 
kxy(2, 1) = 0.2; kxy(2, 2) = 0.2666667; kxy(2, 3) = 0; kxy(2, 4) = -0.2; kxy(2, 5) = -0.0666667; kxy(2, 6) = 0; 

kxy(2, 7) = 0.2; kxy(2, 8) = 0.0666667; kxy(2, 9) = 0; kxy(2, 10) = -0.2; kxy(2, 11) = -0.2666667; kxy(2, 12) = 

0; 
kxy(3, 1) = 0.2; kxy(3, 2) = 0; kxy(3, 3) = 0.2666667; kxy(3, 4) = -0.2; kxy(3, 5) = 0; kxy(3, 6) = -0.26666667; 

kxy(3, 7) = 0.2; kxy(3, 8) = 0; kxy(3, 9) = 0.0666667; kxy(3, 10) = -0.2; kxy(3, 11) = 0; kxy(3, 12) = -

0.0666667; 
kxy(4, 1) = -2.8; kxy(4, 2) = -0.2; kxy(4, 3) = -0.2; kxy(4, 4) = 2.8; kxy(4, 5) = -0.2; kxy(4, 6) = 0.2; kxy(4, 7) = 

-2.8; kxy(4, 8) = 0.2; kxy(4, 9) = 0.2; kxy(4, 10) = 2.8; kxy(4, 11) = 0.2; kxy(4, 12) = -0.2; 
kxy(5, 1) = 0.2; kxy(5, 2) = -0.0666667; kxy(5, 3) = 0; kxy(5, 4) = -0.2; kxy(5, 5) = 0.2666667; kxy(5, 6) = 0; 

kxy(5, 7) = 0.2; kxy(5, 8) = -0.2666667; kxy(5, 9) = 0; kxy(5, 10) = -0.2; kxy(5, 11) = 0.0666667; kxy(5, 12) = 

0; 
kxy(6, 1) = -0.2; kxy(6, 2) = 0; kxy(6, 3) = -0.2666667; kxy(6, 4) = 0.2; kxy(6, 5) = 0; kxy(6, 6) = 0.2666667; 

kxy(6, 7) = -0.2; kxy(6, 8) = 0; kxy(6, 9) = -0.0666667; kxy(6, 10) = 0.2; kxy(6, 11) = 0; kxy(6, 12) = 

0.0666667; 
kxy(7, 1) = 2.8; kxy(7, 2) = 0.2; kxy(7, 3) = 0.2; kxy(7, 4) = -2.8; kxy(7, 5) = 0.2; kxy(7, 6) = -0.2; kxy(7, 7) = 

2.8; kxy(7, 8) = -0.2; kxy(7, 9) = -0.2; kxy(7, 10) = -2.8; kxy(7, 11) = -0.2; kxy(7, 12) = 0.2; 
kxy(8, 1) = -0.2; kxy(8, 2) = 0.06666667; kxy(8, 3) = 0; kxy(8, 4) = 0.2; kxy(8, 5) = -0.2666667; kxy(8, 6) = 0; 

kxy(8, 7) = -0.2; kxy(8, 8) = 0.2666667; kxy(8, 9) = 0; kxy(8, 10) = 0.2; kxy(8, 11) = -0.0666667; kxy(8, 12) = 

0; 
kxy(9, 1) = -0.2; kxy(9, 2) = 0; kxy(9, 3) = 0.0666667; kxy(9, 4) = 0.2; kxy(9, 5) = 0; kxy(9, 6) = -0.0666667; 

kxy(9, 7) = -0.2; kxy(9, 8) = 0; kxy(9, 9) = 0.2666667; kxy(9, 10) = 0.2; kxy(9, 11) = 0; kxy(9, 12) = -

0.2666667; 
kxy(10, 1) = -2.8; kxy(10, 2) = -0.2; kxy(10, 3) = -0.2; kxy(10, 4) = 2.8; kxy(10, 5) = -0.2; kxy(10, 6) = 0.2; 

kxy(10, 7) = -2.8; kxy(10, 8) = 0.2; kxy(10, 9) = 0.2; kxy(10, 10) = 2.8; kxy(10, 11) = 0.2; kxy(10, 12) = -0.2; 
kxy(11, 1) = -0.2; kxy(11, 2) = -0.2666667; kxy(11, 3) = 0; kxy(11, 4) = 0.2; kxy(11, 5) = 0.0666667; kxy(11, 6) 

= 0; kxy(11, 7) = -0.2; kxy(11, 8) = -0.0666667; kxy(11, 9) = 0; kxy(11, 10) = 0.2; kxy(11, 11) = 0.2666667; 

kxy(11, 12) = 0; 
kxy(12, 1) = 0.2; kxy(12, 2) = 0; kxy(12, 3) = -0.0666667; kxy(12, 4) = -0.2; kxy(12, 5) = 0; kxy(12, 6) = 

0.0666667; kxy(12, 7) = 0.2; kxy(12, 8) = 0; kxy(12, 9) = -0.2666667; kxy(12, 10) = -0.2; kxy(12, 11) = 0; 

kxy(12, 12) = 0.2666667; 
  
%' Inertia matrix 
ki(1, 1) = 0.13706; ki(1, 2) = 0.01829; ki(1, 3) = 0.01829; ki(1, 4) = 0.04865; ki(1, 5) = -0.01087; ki(1, 6) = 

0.0079; ki(1, 7) = 0.01563; ki(1, 8) = -0.0046; ki(1, 9) = -0.0046; ki(1, 10) = 0.04865; ki(1, 11) = 0.0079; ki(1, 

12) = -0.01087; 
ki(2, 1) = 0.01829; ki(2, 2) = 0.00317; ki(2, 3) = 0.0025; ki(2, 4) = 0.01087; ki(2, 5) = -0.00238; ki(2, 6) = 

0.00167; ki(2, 7) = 0.0046; ki(2, 8) = -0.00119; ki(2, 9) = -0.00111; ki(2, 10) = 0.0079; ki(2, 11) = 0.00159; 

ki(2, 12) = -0.00167; 
ki(3, 1) = 0.01829; ki(3, 2) = 0.0025; ki(3, 3) = 0.00317; ki(3, 4) = 0.0079; ki(3, 5) = -0.00167; ki(3, 6) = 

0.00159; ki(3, 7) = 0.0046; ki(3, 8) = -0.00111; ki(3, 9) = -0.00119; ki(3, 10) = 0.01087; ki(3, 11) = 0.00167; 

ki(3, 12) = -0.00238; 
ki(4, 1) = 0.04865; ki(4, 2) = 0.01087; ki(4, 3) = 0.0079; ki(4, 4) = 0.13706; ki(4, 5) = -0.01829; ki(4, 6) = 

0.01829; ki(4, 7) = 0.04865; ki(4, 8) = -0.0079; ki(4, 9) = -0.01087; ki(4, 10) = 0.01563; ki(4, 11) = 0.0046; 

ki(4, 12) = -0.0046; 
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ki(5, 1) = -0.01087; ki(5, 2) = -0.00238; ki(5, 3) = -0.00167; ki(5, 4) = -0.01829; ki(5, 5) = 0.00317; ki(5, 6) = -

0.0025; ki(5, 7) = -0.0079; ki(5, 8) = 0.00159; ki(5, 9) = 0.00167; ki(5, 10) = -0.0046; ki(5, 11) = -0.00119; ki(5, 

12) = 0.00111; 
ki(6, 1) = 0.0079; ki(6, 2) = 0.00167; ki(6, 3) = 0.00159; ki(6, 4) = 0.01829; ki(6, 5) = -0.0025; ki(6, 6) = 

0.00317; ki(6, 7) = 0.01087; ki(6, 8) = -0.00167; ki(6, 9) = -0.00238; ki(6, 10) = 0.0046; ki(6, 11) = 0.00111; 

ki(6, 12) = -0.00119; 
ki(7, 1) = 0.01563; ki(7, 2) = 0.0046; ki(7, 3) = 0.0046; ki(7, 4) = 0.04865; ki(7, 5) = -0.0079; ki(7, 6) = 

0.01087; ki(7, 7) = 0.13706; ki(7, 8) = -0.01829; ki(7, 9) = -0.01829; ki(7, 10) = 0.04865; ki(7, 11) = 0.01087; 

ki(7, 12) = -0.0079; 
ki(8, 1) = -0.0046; ki(8, 2) = -0.00119; ki(8, 3) = -0.00111; ki(8, 4) = -0.0079; ki(8, 5) = 0.00159; ki(8, 6) = -

0.00167; ki(8, 7) = -0.01829; ki(8, 8) = 0.00317; ki(8, 9) = 0.0025; ki(8, 10) = -0.01087; ki(8, 11) = -0.00238; 

ki(8, 12) = 0.00167; 
ki(9, 1) = -0.0046; ki(9, 2) = -0.00111; ki(9, 3) = -0.00119; ki(9, 4) = -0.01087; ki(9, 5) = 0.00167; ki(9, 6) = -

0.00238; ki(9, 7) = -0.01829; ki(9, 8) = 0.0025; ki(9, 9) = 0.00317; ki(9, 10) = -0.0079; ki(9, 11) = -0.00167; 

ki(9, 12) = 0.00159; 
ki(10, 1) = 0.04865; ki(10, 2) = 0.0079; ki(10, 3) = 0.01087; ki(10, 4) = 0.01563; ki(10, 5) = -0.0046; ki(10, 6) = 

0.0046; ki(10, 7) = 0.04865; ki(10, 8) = -0.01087; ki(10, 9) = -0.0079; ki(10, 10) = 0.13706; ki(10, 11) = 

0.01829; ki(10, 12) = -0.01829; 
ki(11, 1) = 0.0079; ki(11, 2) = 0.00159; ki(11, 3) = 0.00167; ki(11, 4) = 0.0046; ki(11, 5) = -0.00119; ki(11, 6) = 

0.00111; ki(11, 7) = 0.01087; ki(11, 8) = -0.00238; ki(11, 9) = -0.00167; ki(11, 10) = 0.01829; ki(11, 11) = 

0.00317; ki(11, 12) = -0.0025; 
ki(12, 1) = -0.01087; ki(12, 2) = -0.00167; ki(12, 3) = -0.00238; ki(12, 4) = -0.0046; ki(12, 5) = 0.00111; ki(12, 

6) = -0.00119; ki(12, 7) = -0.0079; ki(12, 8) = 0.00167; ki(12, 9) = 0.00159; ki(12, 10) = -0.01829; ki(12, 11) = 

-0.0025; ki(12, 12) = 0.00317; 
  
  
for x = 1 : 12 
for y = 1 : 12 
k(x, y) = k(x, y) + kx(x, y) + kxy(x, y) / af ^ 2 + ky(x, y) / af ^ 4; 
end 
end 
  

  
%'TYP = InputBox("WHAT TYPE OF PLATE? 1 for SSSS, 2 for CCCC, 3 for CSCS, 4 for CCSS, 5 for 

CCCS, 6 for CSSS"); TYP = TYP * 1 
g = input('WHAT IS THE SIZE OF THE GRID 3,5,7 etc?'); g = g * 1;  
n = 3 * (g ^ 2); NN = (g + 2 + g) * 2; m = 3; mm = 3 * g; nm = n + 3 * g; 
%ReDim kk(nm, nm), q(nm), kki(nm, nm), kii(nm, nm) 
for x = 1 : nm 
for y = 1 : nm 
 kk(x, y) = 0; kii(x, y) = 0; kki(x, y) = 0; 
 end 
 end 
  
% STIFFNESS for PURE W one node 
    x = 1; 
    %for x = 1 : n - 2 Step 3 
    while x < n - 1 
        kk(x, x) = 4 * k(1, 1); kii(x, x) = 4 * ki(1, 1); 
        x = x + 3; 
    end 
% Pure Tx one node 
    x = 2; 
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    % for x = 2 : n - 1 Step 3 
    while x < n 
        kk(x, x) = 4 * k(2, 2); kii(x, x) = 4 * ki(2, 2); 
        x = x + 3; 
     end 
 

% Pure Ty one node 
    x = 3; 
    % for x = 3 : n Step 3 
    while x < n + 1 
        kk(x, x) = 4 * k(3, 3); kii(x, x) = 4 * ki(3, 3); 
        x = x + 3; 
     end 
  
% Pure W-Tx; W-Ty one node 
    x = 3; 
    %for x = 3 : n - 2 Step 3 
    while x < n - 1 
        kk(x, x + 1) = 0; kii(x, x + 1) = 0; 
        kk(x, x + 2) = 0; kii(x, x + 2) = 0; 
        x = x + 3; 
     end 
% Pure W two nodes  
    t = 1; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(1, 4) + k(10, 7); kii(t, t1) = ki(1, 4) + ki(10, 7); 
        kk(t, t2) = k(1, 10) + k(4, 7); kii(t, t2) = ki(1, 10) + ki(4, 7); 
        kk(t, t3) = k(1, 7); kii(t, t3) = ki(1, 7); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g - 2; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(1, 10) + k(4, 7); kii(t, t1) = ki(1, 10) + ki(4, 7); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 1; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(1, 4) + k(10, 7); kii(t, t1) = ki(1, 4) + ki(10, 7); 
        t = t1; t1 = t1 + 3; 
    end 
     
    % Pure Tx two nodes  
    t = 2; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(2, 5) + k(11, 8); kii(t, t1) = ki(2, 5) + ki(11, 8); 
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        kk(t, t2) = k(2, 11) + k(5, 8); kii(t, t2) = ki(2, 11) + ki(5, 8); 
        kk(t, t3) = k(2, 8); kii(t, t3) = ki(2, 8); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
  t = 3 * g - 1; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(2, 11) + k(5, 8); kii(t, t1) = ki(2, 11) + ki(5, 8); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 2; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(2, 5) + k(11, 8); kii(t, t1) = ki(2, 5) + ki(11, 8); 
        t = t1; t1 = t1 + 3; 
    end 
  
  % Pure Ty two nodes  
    t = 3; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(3, 6) + k(12, 9); kii(t, t1) = ki(3, 6) + ki(12, 9); 
        kk(t, t2) = k(3, 12) + k(6, 9); kii(t, t2) = ki(3, 12) + ki(6, 9); 
        kk(t, t3) = k(3, 9); kii(t, t3) = ki(3, 9); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(3, 12) + k(6, 9); kii(t, t1) = ki(3, 12) + ki(6, 9); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 3; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(3, 6) + k(12, 9); kii(t, t1) = ki(3, 6) + ki(12, 9); 
        t = t1; t1 = t1 + 3; 
    end 
     
    % Pure W two nodes back down 
    t = 4; t1 = t + 3 * (g - 1); t2 = t1 + 1; t3 = t1 + 2; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(4, 10); kii(t, t1) = ki(4, 10); 
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        kk(t + 1, t1) = k(5, 10); kii(t + 1, t1) = ki(5, 10); 
        kk(t + 2, t1) = k(6, 10); kii(t + 2, t1) = ki(6, 10); 
         
        kk(t + 1, t2) = k(5, 11); kii(t + 1, t2) = ki(5, 11); 
        kk(t + 2, t3) = k(6, 12); kii(t + 2, t3) = ki(6, 12); 
         
        kk(t, t2) = k(4, 11); kii(t, t2) = ki(4, 11); 
        kk(t, t3) = k(4, 12); kii(t, t3) = ki(4, 12); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
  end 
  
  
 % W-Tx W-Ty two nodes 
    t = 1; tx1 = t + 4; ty1 = t + 5; tx2 = t + 3 * g + 1; ty2 = t + 3 * g + 2; 
    tx3 = tx2 + 3; ty3 = ty2 + 3; 
    tt = t; ttx1 = tx1; tty1 = ty1; ttx2 = tx2; tty2 = ty2; 
    ttx3 = tx3; tty3 = ty3; 
     
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, tx1) = k(1, 5) + k(10, 8); kii(t, tx1) = ki(1, 5) + ki(10, 8); 
        kk(t + 1, tx1 - 1) = k(2, 4) + k(11, 7); kii(t + 1, tx1 - 1) = ki(2, 4) + ki(11, 7); 
        kk(t + 2, tx1 - 1) = k(3, 4) + k(12, 7); kii(t + 2, tx1 - 1) = ki(3, 4) + ki(12, 7); 
         
        kk(t, tx2) = k(1, 11) + k(4, 8); kii(t, tx2) = ki(1, 11) + ki(4, 8); 
        kk(t + 1, tx2 - 1) = k(2, 10) + k(5, 7); kii(t + 1, tx2 - 1) = ki(2, 10) + ki(5, 7); 
        kk(t + 2, tx2 - 1) = k(3, 10) + k(6, 7); kii(t + 2, tx2 - 1) = ki(3, 10) + ki(6, 7); 
         
        kk(t, tx3) = k(1, 8); kii(t, tx3) = ki(1, 8); 
        kk(t + 1, tx3 - 1) = k(2, 7); kii(t + 1, tx3 - 1) = ki(2, 7); 
        kk(t + 2, tx3 - 1) = k(3, 7); kii(t + 2, tx3 - 1) = ki(3, 7); 
         
        kk(t, ty1) = k(1, 6) + k(10, 9); kii(t, ty1) = ki(1, 6) + ki(10, 9); 
        kk(t, ty2) = k(1, 12) + k(4, 9); kii(t, ty2) = ki(1, 12) + ki(4, 9); 
        kk(t, ty3) = k(1, 9); kii(t, ty3) = ki(1, 9); 
        t = t + 3; tx1 = tx1 + 3; tx2 = tx2 + 3; tx3 = tx3 + 3; 
        ty1 = ty1 + 3; ty2 = ty2 + 3; ty3 = ty3 + 3; 
    end 
        t = tt + 3 * g; tx1 = ttx1 + 3 * g; tx2 = ttx2 + 3 * g; tx3 = ttx3 + 3 * g;  
        ty1 = tty1 + 3 * g; ty2 = tty2 + 3 * g; ty3 = tty3 + 3 * g; 
        tt = t; ttx1 = tx1; ttx2 = tx2; ttx3 = tx3; 
        tty1 = ty1; tty2 = ty2; tty3 = ty3; 
    end 
     
    t = 3 * g - 2; tx1 = t + 3 * g + 1; ty1 = t + 3 * g + 2; 
    for x = 1 : g - 1 
        kk(t, tx1) = k(1, 11) + k(4, 8); kii(t, tx1) = ki(1, 11) + ki(4, 8); 
        kk(t + 1, tx1 - 1) = k(5, 7) + k(2, 10); kii(t + 1, tx1 - 1) = ki(5, 7) + ki(2, 10); 
        kk(t + 2, tx1 - 1) = k(6, 7) + k(3, 10); kii(t + 2, tx1 - 1) = ki(6, 7) + ki(3, 10); 
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        kk(t, ty1) = k(1, 12) + k(4, 9); kii(t, ty1) = ki(1, 12) + ki(4, 9); 
        t = tx1 - 1; tx1 = tx1 + 3 * g; ty1 = ty1 + 3 * g; 
    end 
     
    t = n - 3 * g + 1; tx1 = t + 4; ty1 = t + 5; 
    for x = 1 : g - 1 
        kk(t, tx1) = k(1, 5) + k(10, 8); kii(t, tx1) = ki(1, 5) + ki(10, 8); 
        kk(t + 1, tx1 - 1) = k(11, 7) + k(2, 4); kii(t + 1, tx1 - 1) = ki(11, 7) + ki(2, 4); 
        kk(t + 2, tx1 - 1) = k(12, 7) + k(3, 4); kii(t + 2, tx1 - 1) = ki(12, 7) + ki(3, 4); 
         
        kk(t, ty1) = k(1, 6) + k(10, 9); kii(t, ty1) = ki(1, 6) + ki(10, 9); 
        t = tx1 - 1; tx1 = tx1 + 3; ty1 = ty1 + 3; 
    end 
    
% Boundary conditions  
t1 = n + 1; t2 = n + g; t3 = n + g + 1; t4 = n + 2 * g; t5 = n + 2 * g + 1; 
t6 = n + 3 * g; t7 = n + 3 * g + 1; t8 = n + 4 * g; 
f1 = 1; f2 = n - 3 * g + 1; f3 = 3 * g - 2; f4 = n - 2; 
%left boundary 
x = 1; tt1 = t1; 
while x < f2 + 1 
%for x = 1 : f2 Step 3 * g 
    kk(x, t1) = k(4, 2) + k(7, 11); kii(x, t1) = ki(4, 2) + ki(7, 11); 
    kk(x + 1, t1) = k(5, 2) + k(8, 11); kii(x + 1, t1) = ki(5, 2) + ki(8, 11); 
    kk(x + 2, t1) = k(6, 2) + k(9, 11); kii(x + 2, t1) = ki(6, 2) + ki(9, 11); 
   x = x + 3 * g; 
  t1 = t1 + 1; 
%end 
end 
 x = 3 * g + 1; t1 = tt1; 
while x < f2 + 1 
%for x = 3 * g + 1 : f2 Step 3 * g 
    kk(x, t1) = k(7, 2); kii(x, t1) = ki(7, 2); 
    kk(x + 1, t1) = k(8, 2); kii(x + 1, t1) = ki(8, 2); 
    kk(x + 2, t1) = k(9, 2); kii(x + 2, t1) = ki(9, 2); 
    %kk(t1, t1 + 1) = k(2, 11); 
   x = x + 3 * g; 
   t1 = t1 + 1; 
%end 
end 
  
for x = n + 1 : n + g - 1 
kk(x, x + 1) = k(2, 11); kii(x, x + 1) = ki(2, 11); 
end 
  
x = 1; t1 = tt1 + 1; 
while x < f2 - 3 * g + 1 
%for x = 1 : f2 - 3 * g Step 3 * g 
    kk(x, t1) = k(4, 11); kii(x, t1) = ki(4, 11); 
    kk(x + 1, t1) = k(5, 11); kii(x + 1, t1) = ki(5, 11); 
    kk(x + 2, t1) = k(6, 11); kii(x + 2, t1) = ki(6, 11); 



 

135 
 

APENDIX D 
 

 
MATLAB Program Formulated for CSSS Boundary Condition 

 

 

    x = x + 3 * g; 
t1 = t1 + 1; 
%end 
end 
x = n + 1 ; 
while x < n + g + 1 
%for x = n + 1 : n + g 
%%for x = n + 1; n + g 
    kk(x, x) = k(2, 2) + k(11, 11); kii(x, x) = ki(2, 2) + ki(11, 11); 
    x = x + 1; 
%end 
end 
  
%%Right boundary 
 x = f3; tt3 = t3; 
while x < f4 + 1 
%for x = f3 : f4 Step 3 * g 
    kk(x, t3) = k(1, 5) + k(10, 8); kii(x, t3) = ki(1, 5) + ki(10, 8); 
    kk(x + 1, t3) = k(2, 5) + k(11, 8); kii(x + 1, t3) = ki(2, 5) + ki(11, 8); 
    kk(x + 2, t3) = k(3, 5) + k(12, 8); kii(x + 2, t3) = ki(3, 5) + ki(12, 8); 
    x = x + 3 * g; 
t3 = t3 + 1; 
%end 
end 
 x = f3 + 3 * g; t3 = tt3; 
while x < f4 + 1 
%for x = f3 + 3 * g : f4 Step 3 * g 
    kk(x, t3) = k(10, 5); kii(x, t3) = ki(10, 5); 
    kk(x + 1, t3) = k(11, 5); kii(x + 1, t3) = ki(11, 5); 
    kk(x + 2, t3) = k(12, 5); kii(x + 2, t3) = ki(12, 5); 
   % kk(t3, t3 + 1) = k(5, 8); 
   x = x + 3 * g; 
t3 = t3 + 1; 
%end 
end 
  
for x = n + g + 1 : n + 2 * g - 1 
kk(x, x + 1) = k(5, 8); kii(x, x + 1) = ki(5, 8); 
end 
  
x = f3; t3 = tt3 + 1; 
while x < f4 - 3 * g + 1 
%for x = f3 : f4 - 3 * g Step 3 * g 
    kk(x, t3) = k(1, 8); kii(x, t3) = ki(1, 8); 
    kk(x + 1, t3) = k(2, 8); kii(x + 1, t3) = ki(2, 8); 
    kk(x + 2, t3) = k(3, 8); kii(x + 2, t3) = ki(3, 8); 
   x = x + 3 * g; 
t3 = t3 + 1; 
%end 
end 
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%while x < n + 2 * g + 1 
for x = n + g + 1 : n + 2 * g 
%for x = n + 1; n + g 
    kk(x, x) = k(5, 5) + k(8, 8); kii(x, x) = ki(5, 5) + ki(8, 8); 
    %x = x + 1; 
%end 
end 
  
%%Bot:m boundary 
  x = f2; tt5 = t5; 
while x < f4 + 1 
%for x = f2 : f4 Step 3 
    kk(x, t5) = k(1, 12) + k(4, 9); kii(x, t5) = ki(1, 12) + ki(4, 9); 
    kk(x + 1, t5) = k(2, 12) + k(5, 9); kii(x + 1, t5) = ki(2, 12) + ki(5, 9); 
    kk(x + 2, t5) = k(3, 12) + k(6, 9); kii(x + 2, t5) = ki(3, 12) + ki(6, 9); 
    x = x + 3; 
 t5 = t5 + 1; 
%end 
end 
   
  x = f2 + 3; t5 = tt5; 
while x < f4 + 1 
%for x = f2 + 3 : f4 Step 3 
 

    kk(x, t5) = k(4, 12); kii(x, t5) = ki(4, 12); 
    kk(x + 1, t5) = k(5, 12); kii(x + 1, t5) = ki(5, 12); 
    kk(x + 2, t5) = k(6, 12); kii(x + 2, t5) = ki(6, 12); 
  %  kk(t7, t7 + 1) = k(12, 9); 
    x = x + 3; 
 t5 = t5 + 1; 
%end 
end 
  
for x = n + 2 * g + 1 : nm - 1 
 kk(x, x + 1) = k(9, 12); kii(x, x + 1) = ki(9, 12); 
 end 
  
 x = f2; t5 = tt5 + 1; 
while x < f4 - 2 
%for x = f2 : f4 - 3 Step 3 
    kk(x, t5) = k(1, 9); kii(x, t5) = ki(1, 9); 
    kk(x + 1, t5) = k(2, 9); kii(x + 1, t5) = ki(2, 9); 
    kk(x + 2, t5) = k(3, 9); kii(x + 2, t5) = ki(3, 9); 
   x = x + 3; 
t5 = t5 + 1; 
%end 
end 
  

  
%while x < nm + 1 
for x = n + 2 * g + 1 : nm 
%%for x = n + 1; n + g 
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   kk(x, x) = k(9, 9) + k(12, 12); kii(x, x) = ki(9, 9) + ki(12, 12); 
   % x = x + 1; 
%end 
end 
  
%Complete the symmetry 
 for x = 1 : nm 
    for y = 1 : nm 
    kk(y, x) = kk(x, y); kii(y, x) = kii(x, y); 
    end 
 end 
  
%Load Vector 
  
x = 1; 
while x < n + 1 
%for x = 1 : n Step 3 
    %%for x = 1 : n - 2 Step 3 
        q(x) = 1; 
        q(x + 1) = 0; 
         q(x + 2) = 0; 
     x = x +3; 
%end 
end 
% left load 
for x = n + 1 : n + g 
    q(x) = 0.0833333333333; 
end 
 

%right load 
for x = n + g + 1 : n + 2 * g 
    q(x) = -0.0833333333333; 
end 
  
% bottom load 
 for x = n + 2 * g + 1 : n + 3 * g 
    q(x) = -0.0833333333333; 
 end 
  
  ncd = (n - 1) / 2; 
kgv = inv(kk); 
dd = kgv * transpose(q); 
dc = dd(ncd) *1000 / (1 + g) ^ 4; 
kki = inv(kii)* kk; 
ld = eig(kki)* (1 + g) ^ 4;  
      %  end 
       % end 
         
%        dd(ncd) = dd(ncd) / (1 + g) ^ 4 
 %ReDim kgv(nm, 2 * nm), kgvr(nm, 2 * nm) 
%for x = 1 : nm 
 %   for y = 1 : 2 * nm 
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%  kgv(x, y) = 0; kgvr(x, y) = 0; 
   % end 
% end 
  
 %for x = 1 : nm 
  %  kgv(x, x + nm) = 1 
%  end 
  
 %for x = 1 : nm 
  %  for y = 1 : nm 
   % kgv(x, y) = kk(x, y); 
    %end 
% end 
 %      for i = 1 : nm 
  %      owuss = kgv(i, i) 
   %     for j = 1 : 2 * nm 
    %    kgv(i, j) = kgv(i, j) / owuss 
     %   end 
      %  for j = 1 : nm 
       % If (j = i) Then Go: 1460 
        %owuss = kgv(j, i) 
%        for z = 1 : 2 * nm 
 %       kgv(j, z) = kgv(j, z) - owuss * kgv(i, z) 
  %      Next z 
%1460    end 
 %       end 
         
%        for x = 1 : nm 
 %       for y = 1 : nm 
  %      kgv(x, y) = kgv(x, y + nm) 
   %     end 
    %    end 
        
       %this is the end of inversion 
  
% displacem 
%  ***   calculate global nodal displacements for the unrestrained nodes  ******  
%        ncd = (n - 1) / 2 % number of central node 
        %ReDim dd(nm + 1) 
%        for x = 1 : nm 
 %       dd(x) = 0 
  %      end 
   %     for x = 1 : nm 
    %    for y = 1 : nm 
     %   dd(x) = dd(x) + kgv(x, y) * q(y) 
      %  end 
       % end 
         
%        dd(ncd) = dd(ncd) / (1 + g) ^ 4 
  
   
%      Text1.Text = Text1.Text + ("central deflection ") & vbCrLf 
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 %     Text1.Text = Text1.Text + CStr(format(dd(ncd), "0.0000000#")) & vbCrLf 
     % Text1.Text = Text1.Text + CStr(format(dd(13), "0.0000000#")) & vbCrLf 
      
      % Resonating matrix 
%        for i = 1 : nm 
 %       for j = 1 : nm 
  %      for l = 1 : nm 
   %     kki(i, j) = kki(i, j) + kgv(i, l) * kii(l, j) 
    %    Next l 
     %   end 
      %  end 
  
         
%        for x = 1 : nm 
 %       for y = 1 : nm 
  %      Text1.Text = Text1.Text + CStr(format(kki(x, y), "0.0000000#")) & vbTab  
   %     end 
    %    Text1.Text = Text1.Text + (" ") & vbCrLf 
     %   end 
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%ReDim kx(12, 12), kxy(12, 12), ky(12, 12), k(12, 12), ki(12, 12) 
for x = 1 : 12 
for y = 1 : 12 
k(x, y) = 0; kx(x, y) = 0; kxy(x, y) = 0; ky(x, y) = 0; 
end 
end 
af = input('WHAT IS THE aspect ratio, b/a?'); af = af * 1; 
kx(1, 1) = 4; kx(1, 2) = 2; kx(1, 3) = 0; kx(1, 4) = -4; kx(1, 5) = 2; kx(1, 6) = 0; kx(1, 7) = -2; kx(1, 8) = 1; kx(1, 

9) = 0; kx(1, 10) = 2; kx(1, 11) = 1; kx(1, 12) = 0; 
kx(2, 1) = 2; kx(2, 2) = 1.333333; kx(2, 3) = 0; kx(2, 4) = -2; kx(2, 5) = 0.6666667; kx(2, 6) = 0; kx(2, 7) = -1; 

kx(2, 8) = 0.333333; kx(2, 9) = 0; kx(2, 10) = 1; kx(2, 11) = 0.6666667; kx(2, 12) = 0; 
kx(3, 1) = 0; kx(3, 2) = 0; kx(3, 3) = 0; kx(3, 4) = 0; kx(3, 5) = 0; kx(3, 6) = 0; kx(3, 7) = 0; kx(3, 8) = 0; kx(3, 

9) = 0; kx(3, 10) = 0; kx(3, 11) = 0; kx(3, 12) = 0; 
kx(4, 1) = -4; kx(4, 2) = -2; kx(4, 3) = 0; kx(4, 4) = 4; kx(4, 5) = -2; kx(4, 6) = 0; kx(4, 7) = 2; kx(4, 8) = -1; 

kx(4, 9) = 0; kx(4, 10) = -2; kx(4, 11) = -1; kx(4, 12) = 0; 
kx(5, 1) = 2; kx(5, 2) = 0.6666667; kx(5, 3) = 0; kx(5, 4) = -2; kx(5, 5) = 1.3333333; kx(5, 6) = 0; kx(5, 7) = -1; 

kx(5, 8) = 0.6666667; kx(5, 9) = 0; kx(5, 10) = 1; kx(5, 11) = 0.3333333; kx(5, 12) = 0; 
kx(6, 1) = 0; kx(6, 2) = 0; kx(6, 3) = 0; kx(6, 4) = 0; kx(6, 5) = 0; kx(6, 6) = 0; kx(6, 7) = 0; kx(6, 8) = 0; kx(6, 

9) = 0; kx(6, 10) = 0; kx(6, 11) = 0; kx(6, 12) = 0; 
kx(7, 1) = -2; kx(7, 2) = -1; kx(7, 3) = 0; kx(7, 4) = 2; kx(7, 5) = -1; kx(7, 6) = 0; kx(7, 7) = 4; kx(7, 8) = -2; 

kx(7, 9) = 0; kx(7, 10) = -4; kx(7, 11) = -2; kx(7, 12) = 0; 
kx(8, 1) = 1; kx(8, 2) = 0.3333333; kx(8, 3) = 0; kx(8, 4) = -1; kx(8, 5) = 0.6666667; kx(8, 6) = 0; kx(8, 7) = -2; 

kx(8, 8) = 1.3333333; kx(8, 9) = 0; kx(8, 10) = 2; kx(8, 11) = 0.6666667; kx(8, 12) = 0; 
kx(9, 1) = 0; kx(9, 2) = 0; kx(9, 3) = 0; kx(9, 4) = 0; kx(9, 5) = 0; kx(9, 6) = 0; kx(9, 7) = 0; kx(9, 8) = 0; kx(9, 

9) = 0; kx(9, 10) = 0; kx(9, 11) = 0; kx(9, 12) = 0; 
kx(10, 1) = 2; kx(10, 2) = 1; kx(10, 3) = 0; kx(10, 4) = -2; kx(10, 5) = 1; kx(10, 6) = 0; kx(10, 7) = -4; kx(10, 8) 

= 2; kx(10, 9) = 0; kx(10, 10) = 4; kx(10, 11) = 2; kx(10, 12) = 0; 
kx(11, 1) = 1; kx(11, 2) = 0.6666667; kx(11, 3) = 0; kx(11, 4) = -1; kx(11, 5) = 0.3333333; kx(11, 6) = 0; kx(11, 

7) = -2; kx(11, 8) = 0.6666667; kx(11, 9) = 0; kx(11, 10) = 2; kx(11, 11) = 1.3333333; kx(11, 12) = 0; 
kx(12, 1) = 0; kx(12, 2) = 0; kx(12, 3) = 0; kx(12, 4) = 0; kx(12, 5) = 0; kx(12, 6) = 0; kx(12, 7) = 0; kx(12, 8) = 

0; kx(12, 9) = 0; kx(12, 10) = 0; kx(12, 11) = 0; kx(12, 12) = 0; 
  
  
ky(1, 1) = 4; ky(1, 2) = 0; ky(1, 3) = 2; ky(1, 4) = 2; ky(1, 5) = 0; ky(1, 6) = 1; ky(1, 7) = -2; ky(1, 8) = 0; ky(1, 

9) = 1; ky(1, 10) = -4; ky(1, 11) = 0; ky(1, 12) = 2; 
ky(2, 1) = 0; ky(2, 2) = 0; ky(2, 3) = 0; ky(2, 4) = 0; ky(2, 5) = 0; ky(2, 6) = 0; ky(2, 7) = 0; ky(2, 8) = 0; ky(2, 

9) = 0; ky(2, 10) = 0; ky(2, 11) = 0; ky(2, 12) = 0; 
ky(3, 1) = 2; ky(3, 2) = 0; ky(3, 3) = 1.3333333; ky(3, 4) = 1; ky(3, 5) = 0; ky(3, 6) = 0.6666667; ky(3, 7) = -1; 

ky(3, 8) = 0; ky(3, 9) = 0.3333333; ky(3, 10) = -2; ky(3, 11) = 0; ky(3, 12) = 0.6666667; 
ky(4, 1) = 2; ky(4, 2) = 0; ky(4, 3) = 1; ky(4, 4) = 4; ky(4, 5) = 0; ky(4, 6) = 2; ky(4, 7) = -4; ky(4, 8) = 0; ky(4, 

9) = 2; ky(4, 10) = -2; ky(4, 11) = 0; ky(4, 12) = 1; 
ky(5, 1) = 0; ky(5, 2) = 0; ky(5, 3) = 0; ky(5, 4) = 0; ky(5, 5) = 0; ky(5, 6) = 0; ky(5, 7) = 0; ky(5, 8) = 0; ky(5, 

9) = 0; ky(5, 10) = 0; ky(5, 11) = 0; ky(5, 12) = 0; 
ky(6, 1) = 1; ky(6, 2) = 0; ky(6, 3) = 0.6666667; ky(6, 4) = 2; ky(6, 5) = 0; ky(6, 6) = 1.3333333; ky(6, 7) = -2; 

ky(6, 8) = 0; ky(6, 9) = 0.6666667; ky(6, 10) = -1; ky(6, 11) = 0; ky(6, 12) = 0.3333333; 
ky(7, 1) = -2; ky(7, 2) = 0; ky(7, 3) = -1; ky(7, 4) = -4; ky(7, 5) = 0; ky(7, 6) = -2; ky(7, 7) = 4; ky(7, 8) = 0; 

ky(7, 9) = -2; ky(7, 10) = 2; ky(7, 11) = 0; ky(7, 12) = -1; 
ky(8, 1) = 0; ky(8, 2) = 0; ky(8, 3) = 0; ky(8, 4) = 0; ky(8, 5) = 0; ky(8, 6) = 0; ky(8, 7) = 0; ky(8, 8) = 0; ky(8, 

9) = 0; ky(8, 10) = 0; ky(8, 11) = 0; ky(8, 12) = 0; 
ky(9, 1) = 1; ky(9, 2) = 0; ky(9, 3) = 0.3333333; ky(9, 4) = 2; ky(9, 5) = 0; ky(9, 6) = 0.6666667; ky(9, 7) = -2; 

ky(9, 8) = 0; ky(9, 9) = 1.3333333; ky(9, 10) = -1; ky(9, 11) = 0; ky(9, 12) = 0.6666667; 
ky(10, 1) = -4; ky(10, 2) = 0; ky(10, 3) = -2; ky(10, 4) = -2; ky(10, 5) = 0; ky(10, 6) = -1; ky(10, 7) = 2; ky(10, 

8) = 0; ky(10, 9) = -1; ky(10, 10) = 4; ky(10, 11) = 0; ky(10, 12) = -2; 
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ky(11, 1) = 0; ky(11, 2) = 0; ky(11, 3) = 0; ky(11, 4) = 0; ky(11, 5) = 0; ky(11, 6) = 0; ky(11, 7) = 0; ky(11, 8) = 

0; ky(11, 9) = 0; ky(11, 10) = 0; ky(11, 11) = 0; ky(11, 12) = 0; 
ky(12, 1) = 2; ky(12, 2) = 0; ky(12, 3) = 0.6666667; ky(12, 4) = 1; ky(12, 5) = 0; ky(12, 6) = 0.3333333; ky(12, 

7) = -1; ky(12, 8) = 0; ky(12, 9) = 0.6666667; ky(12, 10) = -2; ky(12, 11) = 0; ky(12, 12) = 1.3333333; 
kxy(1, 1) = 2.8; kxy(1, 2) = 0.2; kxy(1, 3) = 0.2; kxy(1, 4) = -2.8; kxy(1, 5) = 0.2; kxy(1, 6) = -0.2; kxy(1, 7) = 

2.8; kxy(1, 8) = -0.2; kxy(1, 9) = -0.2; kxy(1, 10) = -2.8; kxy(1, 11) = -0.2; kxy(1, 12) = 0.2; 
kxy(2, 1) = 0.2; kxy(2, 2) = 0.2666667; kxy(2, 3) = 0; kxy(2, 4) = -0.2; kxy(2, 5) = -0.0666667; kxy(2, 6) = 0; 

kxy(2, 7) = 0.2; kxy(2, 8) = 0.0666667; kxy(2, 9) = 0; kxy(2, 10) = -0.2; kxy(2, 11) = -0.2666667; kxy(2, 12) = 

0; 
kxy(3, 1) = 0.2; kxy(3, 2) = 0; kxy(3, 3) = 0.2666667; kxy(3, 4) = -0.2; kxy(3, 5) = 0; kxy(3, 6) = -0.26666667; 

kxy(3, 7) = 0.2; kxy(3, 8) = 0; kxy(3, 9) = 0.0666667; kxy(3, 10) = -0.2; kxy(3, 11) = 0; kxy(3, 12) = -

0.0666667; 
kxy(4, 1) = -2.8; kxy(4, 2) = -0.2; kxy(4, 3) = -0.2; kxy(4, 4) = 2.8; kxy(4, 5) = -0.2; kxy(4, 6) = 0.2; kxy(4, 7) = 

-2.8; kxy(4, 8) = 0.2; kxy(4, 9) = 0.2; kxy(4, 10) = 2.8; kxy(4, 11) = 0.2; kxy(4, 12) = -0.2; 
kxy(5, 1) = 0.2; kxy(5, 2) = -0.0666667; kxy(5, 3) = 0; kxy(5, 4) = -0.2; kxy(5, 5) = 0.2666667; kxy(5, 6) = 0; 

kxy(5, 7) = 0.2; kxy(5, 8) = -0.2666667; kxy(5, 9) = 0; kxy(5, 10) = -0.2; kxy(5, 11) = 0.0666667; kxy(5, 12) = 

0; 
kxy(6, 1) = -0.2; kxy(6, 2) = 0; kxy(6, 3) = -0.2666667; kxy(6, 4) = 0.2; kxy(6, 5) = 0; kxy(6, 6) = 0.2666667; 

kxy(6, 7) = -0.2; kxy(6, 8) = 0; kxy(6, 9) = -0.0666667; kxy(6, 10) = 0.2; kxy(6, 11) = 0; kxy(6, 12) = 

0.0666667; 
kxy(7, 1) = 2.8; kxy(7, 2) = 0.2; kxy(7, 3) = 0.2; kxy(7, 4) = -2.8; kxy(7, 5) = 0.2; kxy(7, 6) = -0.2; kxy(7, 7) = 

2.8; kxy(7, 8) = -0.2; kxy(7, 9) = -0.2; kxy(7, 10) = -2.8; kxy(7, 11) = -0.2; kxy(7, 12) = 0.2; 
kxy(8, 1) = -0.2; kxy(8, 2) = 0.06666667; kxy(8, 3) = 0; kxy(8, 4) = 0.2; kxy(8, 5) = -0.2666667; kxy(8, 6) = 0; 

kxy(8, 7) = -0.2; kxy(8, 8) = 0.2666667; kxy(8, 9) = 0; kxy(8, 10) = 0.2; kxy(8, 11) = -0.0666667; kxy(8, 12) = 

0; 
kxy(9, 1) = -0.2; kxy(9, 2) = 0; kxy(9, 3) = 0.0666667; kxy(9, 4) = 0.2; kxy(9, 5) = 0; kxy(9, 6) = -0.0666667; 

kxy(9, 7) = -0.2; kxy(9, 8) = 0; kxy(9, 9) = 0.2666667; kxy(9, 10) = 0.2; kxy(9, 11) = 0; kxy(9, 12) = -

0.2666667; 
kxy(10, 1) = -2.8; kxy(10, 2) = -0.2; kxy(10, 3) = -0.2; kxy(10, 4) = 2.8; kxy(10, 5) = -0.2; kxy(10, 6) = 0.2; 

kxy(10, 7) = -2.8; kxy(10, 8) = 0.2; kxy(10, 9) = 0.2; kxy(10, 10) = 2.8; kxy(10, 11) = 0.2; kxy(10, 12) = -0.2; 
kxy(11, 1) = -0.2; kxy(11, 2) = -0.2666667; kxy(11, 3) = 0; kxy(11, 4) = 0.2; kxy(11, 5) = 0.0666667; kxy(11, 6) 

= 0; kxy(11, 7) = -0.2; kxy(11, 8) = -0.0666667; kxy(11, 9) = 0; kxy(11, 10) = 0.2; kxy(11, 11) = 0.2666667; 

kxy(11, 12) = 0; 
kxy(12, 1) = 0.2; kxy(12, 2) = 0; kxy(12, 3) = -0.0666667; kxy(12, 4) = -0.2; kxy(12, 5) = 0; kxy(12, 6) = 

0.0666667; kxy(12, 7) = 0.2; kxy(12, 8) = 0; kxy(12, 9) = -0.2666667; kxy(12, 10) = -0.2; kxy(12, 11) = 0; 

kxy(12, 12) = 0.2666667; 
  
%' Inertia matrix 
ki(1, 1) = 0.13706; ki(1, 2) = 0.01829; ki(1, 3) = 0.01829; ki(1, 4) = 0.04865; ki(1, 5) = -0.01087; ki(1, 6) = 

0.0079; ki(1, 7) = 0.01563; ki(1, 8) = -0.0046; ki(1, 9) = -0.0046; ki(1, 10) = 0.04865; ki(1, 11) = 0.0079; ki(1, 

12) = -0.01087; 
ki(2, 1) = 0.01829; ki(2, 2) = 0.00317; ki(2, 3) = 0.0025; ki(2, 4) = 0.01087; ki(2, 5) = -0.00238; ki(2, 6) = 

0.00167; ki(2, 7) = 0.0046; ki(2, 8) = -0.00119; ki(2, 9) = -0.00111; ki(2, 10) = 0.0079; ki(2, 11) = 0.00159; 

ki(2, 12) = -0.00167; 
ki(3, 1) = 0.01829; ki(3, 2) = 0.0025; ki(3, 3) = 0.00317; ki(3, 4) = 0.0079; ki(3, 5) = -0.00167; ki(3, 6) = 

0.00159; ki(3, 7) = 0.0046; ki(3, 8) = -0.00111; ki(3, 9) = -0.00119; ki(3, 10) = 0.01087; ki(3, 11) = 0.00167; 

ki(3, 12) = -0.00238; 
ki(4, 1) = 0.04865; ki(4, 2) = 0.01087; ki(4, 3) = 0.0079; ki(4, 4) = 0.13706; ki(4, 5) = -0.01829; ki(4, 6) = 

0.01829; ki(4, 7) = 0.04865; ki(4, 8) = -0.0079; ki(4, 9) = -0.01087; ki(4, 10) = 0.01563; ki(4, 11) = 0.0046; 

ki(4, 12) = -0.0046; 
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ki(5, 1) = -0.01087; ki(5, 2) = -0.00238; ki(5, 3) = -0.00167; ki(5, 4) = -0.01829; ki(5, 5) = 0.00317; ki(5, 6) = -

0.0025; ki(5, 7) = -0.0079; ki(5, 8) = 0.00159; ki(5, 9) = 0.00167; ki(5, 10) = -0.0046; ki(5, 11) = -0.00119; ki(5, 

12) = 0.00111; 
ki(6, 1) = 0.0079; ki(6, 2) = 0.00167; ki(6, 3) = 0.00159; ki(6, 4) = 0.01829; ki(6, 5) = -0.0025; ki(6, 6) = 

0.00317; ki(6, 7) = 0.01087; ki(6, 8) = -0.00167; ki(6, 9) = -0.00238; ki(6, 10) = 0.0046; ki(6, 11) = 0.00111; 

ki(6, 12) = -0.00119; 
ki(7, 1) = 0.01563; ki(7, 2) = 0.0046; ki(7, 3) = 0.0046; ki(7, 4) = 0.04865; ki(7, 5) = -0.0079; ki(7, 6) = 

0.01087; ki(7, 7) = 0.13706; ki(7, 8) = -0.01829; ki(7, 9) = -0.01829; ki(7, 10) = 0.04865; ki(7, 11) = 0.01087; 

ki(7, 12) = -0.0079; 
ki(8, 1) = -0.0046; ki(8, 2) = -0.00119; ki(8, 3) = -0.00111; ki(8, 4) = -0.0079; ki(8, 5) = 0.00159; ki(8, 6) = -

0.00167; ki(8, 7) = -0.01829; ki(8, 8) = 0.00317; ki(8, 9) = 0.0025; ki(8, 10) = -0.01087; ki(8, 11) = -0.00238; 

ki(8, 12) = 0.00167; 
ki(9, 1) = -0.0046; ki(9, 2) = -0.00111; ki(9, 3) = -0.00119; ki(9, 4) = -0.01087; ki(9, 5) = 0.00167; ki(9, 6) = -

0.00238; ki(9, 7) = -0.01829; ki(9, 8) = 0.0025; ki(9, 9) = 0.00317; ki(9, 10) = -0.0079; ki(9, 11) = -0.00167; 

ki(9, 12) = 0.00159; 
ki(10, 1) = 0.04865; ki(10, 2) = 0.0079; ki(10, 3) = 0.01087; ki(10, 4) = 0.01563; ki(10, 5) = -0.0046; ki(10, 6) = 

0.0046; ki(10, 7) = 0.04865; ki(10, 8) = -0.01087; ki(10, 9) = -0.0079; ki(10, 10) = 0.13706; ki(10, 11) = 

0.01829; ki(10, 12) = -0.01829; 
ki(11, 1) = 0.0079; ki(11, 2) = 0.00159; ki(11, 3) = 0.00167; ki(11, 4) = 0.0046; ki(11, 5) = -0.00119; ki(11, 6) = 

0.00111; ki(11, 7) = 0.01087; ki(11, 8) = -0.00238; ki(11, 9) = -0.00167; ki(11, 10) = 0.01829; ki(11, 11) = 

0.00317; ki(11, 12) = -0.0025; 
ki(12, 1) = -0.01087; ki(12, 2) = -0.00167; ki(12, 3) = -0.00238; ki(12, 4) = -0.0046; ki(12, 5) = 0.00111; ki(12, 

6) = -0.00119; ki(12, 7) = -0.0079; ki(12, 8) = 0.00167; ki(12, 9) = 0.00159; ki(12, 10) = -0.01829; ki(12, 11) = 

-0.0025; ki(12, 12) = 0.00317; 
  

  
for x = 1 : 12 
for y = 1 : 12 
k(x, y) = k(x, y) + kx(x, y) + kxy(x, y) / af ^ 2 + ky(x, y) / af ^ 4; 
end 
end 
  
  
%'TYP = InputBox("WHAT TYPE OF PLATE? 1 for SSSS, 2 for CCCC, 3 for CSCS, 4 for CCSS, 5 for 

CCCS, 6 for CSSS"); TYP = TYP * 1 
g = input('WHAT IS THE SIZE OF THE GRID 3,5,7 etc?'); g = g * 1;  
n = 3 * (g ^ 2); NN = (g + 2 + g) * 2; m = 3; mm = 3 * g; nm = n + g;  
%ReDim kk(nm, nm), q(nm), kki(nm, nm), kii(nm, nm) 
for x = 1 : nm 
for y = 1 : nm 
 kk(x, y) = 0; kii(x, y) = 0; kki(x, y) = 0; 
 end 
 end 
  
% STIFFNESS for PURE W one node 
    x = 1; 
    %for x = 1 : n - 2 Step 3 
    while x < n - 1 
        kk(x, x) = 4 * k(1, 1); kii(x, x) = 4 * ki(1, 1); 
        x = x + 3; 
    end 
% Pure Tx one node 
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 x = 2; 
    % for x = 2 : n - 1 Step 3 
    while x < n 
        kk(x, x) = 4 * k(2, 2); kii(x, x) = 4 * ki(2, 2); 
        x = x + 3; 
     end 
  
% Pure Ty one node 
    x = 3; 
    % for x = 3 : n Step 3 
   while x < n + 1 
        kk(x, x) = 4 * k(3, 3); kii(x, x) = 4 * ki(3, 3); 
        x = x + 3; 
     end 
  
% Pure W-Tx; W-Ty one node 
    x = 3; 
    %for x = 3 : n - 2 Step 3 
    while x < n - 1 
        kk(x, x + 1) = 0; kii(x, x + 1) = 0; 
        kk(x, x + 2) = 0; kii(x, x + 2) = 0; 
        x = x + 3; 
     end 
% Pure W two nodes  
    t = 1; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(1, 4) + k(10, 7); kii(t, t1) = ki(1, 4) + ki(10, 7); 
        kk(t, t2) = k(1, 10) + k(4, 7); kii(t, t2) = ki(1, 10) + ki(4, 7); 
        kk(t, t3) = k(1, 7); kii(t, t3) = ki(1, 7); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g - 2; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(1, 10) + k(4, 7); kii(t, t1) = ki(1, 10) + ki(4, 7); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 1; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(1, 4) + k(10, 7); kii(t, t1) = ki(1, 4) + ki(10, 7); 
        t = t1; t1 = t1 + 3; 
    end 
     
    % Pure Tx two nodes  
    t = 2; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
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    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(2, 5) + k(11, 8); kii(t, t1) = ki(2, 5) + ki(11, 8); 
        kk(t, t2) = k(2, 11) + k(5, 8); kii(t, t2) = ki(2, 11) + ki(5, 8); 
        kk(t, t3) = k(2, 8); kii(t, t3) = ki(2, 8); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g - 1; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(2, 11) + k(5, 8); kii(t, t1) = ki(2, 11) + ki(5, 8); 
 

      

   t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 2; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(2, 5) + k(11, 8); kii(t, t1) = ki(2, 5) + ki(11, 8); 
        t = t1; t1 = t1 + 3; 
    end 
  
  % Pure Ty two nodes  
    t = 3; t1 = t + 3; t2 = t + 3 * g; t3 = t2 + 3; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(3, 6) + k(12, 9); kii(t, t1) = ki(3, 6) + ki(12, 9); 
        kk(t, t2) = k(3, 12) + k(6, 9); kii(t, t2) = ki(3, 12) + ki(6, 9); 
        kk(t, t3) = k(3, 9); kii(t, t3) = ki(3, 9); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
     
    t = 3 * g; t1 = t + 3 * g; 
    for x = 1 : g - 1 
        kk(t, t1) = k(3, 12) + k(6, 9); kii(t, t1) = ki(3, 12) + ki(6, 9); 
        t = t1; t1 = t1 + 3 * g; 
    end 
     
    t = n - 3 * g + 3; t1 = t + 3; 
    for x = 1 : g - 1 
        kk(t, t1) = k(3, 6) + k(12, 9); kii(t, t1) = ki(3, 6) + ki(12, 9); 
        t = t1; t1 = t1 + 3; 
    end 
     
    % Pure W two nodes back down 
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    t = 4; t1 = t + 3 * (g - 1); t2 = t1 + 1; t3 = t1 + 2; 
    tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, t1) = k(4, 10); kii(t, t1) = ki(4, 10); 
        kk(t + 1, t1) = k(5, 10); kii(t + 1, t1) = ki(5, 10); 
        kk(t + 2, t1) = k(6, 10); kii(t + 2, t1) = ki(6, 10); 
         
        kk(t + 1, t2) = k(5, 11); kii(t + 1, t2) = ki(5, 11); 
        kk(t + 2, t3) = k(6, 12); kii(t + 2, t3) = ki(6, 12); 
         
        kk(t, t2) = k(4, 11); kii(t, t2) = ki(4, 11); 
        kk(t, t3) = k(4, 12); kii(t, t3) = ki(4, 12); 
        t = t + 3; t1 = t1 + 3; t2 = t2 + 3; t3 = t3 + 3; 
    end 
        t = tt + 3 * g; t1 = tt1 + 3 * g; t2 = tt2 + 3 * g; t3 = tt3 + 3 * g; 
        tt = t; tt1 = t1; tt2 = t2; tt3 = t3; 
    end 
  
 % W-Tx W-Ty two nodes 
    t = 1; tx1 = t + 4; ty1 = t + 5; tx2 = t + 3 * g + 1; ty2 = t + 3 * g + 2; 
    tx3 = tx2 + 3; ty3 = ty2 + 3; 
    tt = t; ttx1 = tx1; tty1 = ty1; ttx2 = tx2; tty2 = ty2; 
    ttx3 = tx3; tty3 = ty3; 
     
    for x = 1 : g - 1 
    for y = 1 : g - 1 
        kk(t, tx1) = k(1, 5) + k(10, 8); kii(t, tx1) = ki(1, 5) + ki(10, 8); 
        kk(t + 1, tx1 - 1) = k(2, 4) + k(11, 7); kii(t + 1, tx1 - 1) = ki(2, 4) + ki(11, 7); 
        kk(t + 2, tx1 - 1) = k(3, 4) + k(12, 7); kii(t + 2, tx1 - 1) = ki(3, 4) + ki(12, 7); 
         
        kk(t, tx2) = k(1, 11) + k(4, 8); kii(t, tx2) = ki(1, 11) + ki(4, 8); 
        kk(t + 1, tx2 - 1) = k(2, 10) + k(5, 7); kii(t + 1, tx2 - 1) = ki(2, 10) + ki(5, 7); 
        kk(t + 2, tx2 - 1) = k(3, 10) + k(6, 7); kii(t + 2, tx2 - 1) = ki(3, 10) + ki(6, 7); 
         
        kk(t, tx3) = k(1, 8); kii(t, tx3) = ki(1, 8); 
        kk(t + 1, tx3 - 1) = k(2, 7); kii(t + 1, tx3 - 1) = ki(2, 7); 
        kk(t + 2, tx3 - 1) = k(3, 7); kii(t + 2, tx3 - 1) = ki(3, 7); 
         
        kk(t, ty1) = k(1, 6) + k(10, 9); kii(t, ty1) = ki(1, 6) + ki(10, 9); 
        kk(t, ty2) = k(1, 12) + k(4, 9); kii(t, ty2) = ki(1, 12) + ki(4, 9); 
        kk(t, ty3) = k(1, 9); kii(t, ty3) = ki(1, 9); 
        t = t + 3; tx1 = tx1 + 3; tx2 = tx2 + 3; tx3 = tx3 + 3; 
        ty1 = ty1 + 3; ty2 = ty2 + 3; ty3 = ty3 + 3; 
    end 
        t = tt + 3 * g; tx1 = ttx1 + 3 * g; tx2 = ttx2 + 3 * g; tx3 = ttx3 + 3 * g; 
        ty1 = tty1 + 3 * g; ty2 = tty2 + 3 * g; ty3 = tty3 + 3 * g; 
        tt = t; ttx1 = tx1; ttx2 = tx2; ttx3 = tx3; 
        tty1 = ty1; tty2 = ty2; tty3 = ty3; 
    end 
     
    t = 3 * g - 2; tx1 = t + 3 * g + 1; ty1 = t + 3 * g + 2; 
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   for x = 1 : g - 1 
        kk(t, tx1) = k(1, 11) + k(4, 8); kii(t, tx1) = ki(1, 11) + ki(4, 8); 
        kk(t + 1, tx1 - 1) = k(5, 7) + k(2, 10); kii(t + 1, tx1 - 1) = ki(5, 7) + ki(2, 10); 
        kk(t + 2, tx1 - 1) = k(6, 7) + k(3, 10); kii(t + 2, tx1 - 1) = ki(6, 7) + ki(3, 10); 
         
        kk(t, ty1) = k(1, 12) + k(4, 9); kii(t, ty1) = ki(1, 12) + ki(4, 9); 
        t = tx1 - 1; tx1 = tx1 + 3 * g; ty1 = ty1 + 3 * g; 
    end 
     
    t = n - 3 * g + 1; tx1 = t + 4; ty1 = t + 5; 
    for x = 1 : g - 1 
        kk(t, tx1) = k(1, 5) + k(10, 8); kii(t, tx1) = ki(1, 5) + ki(10, 8); 
        kk(t + 1, tx1 - 1) = k(11, 7) + k(2, 4); kii(t + 1, tx1 - 1) = ki(11, 7) + ki(2, 4); 
        kk(t + 2, tx1 - 1) = k(12, 7) + k(3, 4); kii(t + 2, tx1 - 1) = ki(12, 7) + ki(3, 4); 
         
        kk(t, ty1) = k(1, 6) + k(10, 9); kii(t, ty1) = ki(1, 6) + ki(10, 9); 
        t = tx1 - 1; tx1 = tx1 + 3; ty1 = ty1 + 3; 
    end 
          
% Boundary conditions  
 

 

t1 = n + 1; t2 = n + g; t3 = n + g + 1; t4 = n + 2 * g; t5 = n + 2 * g + 1;  
t6 = n + 3 * g; t7 = n + 3 * g + 1; t8 = n + 4 * g; 
f1 = 1; f2 = n - 3 * g + 1; f3 = 3 * g - 2; f4 = n - 2; 
  
%%Right boundary 
 x = f3; tt1 = t1; 
while x < f4 + 1 
%For x = f3 To f4 Step 3 * g 
    kk(x, t1) = k(1, 5) + k(10, 8); kii(x, t1) = ki(1, 5) + ki(10, 8); 
    kk(x + 1, t1) = k(2, 5) + k(11, 8);kii(x + 1, t1) = ki(2, 5) + ki(11, 8); 
    kk(x + 2, t1) = k(3, 5) + k(12, 8);kii(x + 2, t1) = ki(3, 5) + ki(12, 8); 
    x = x + 3 * g; 
t1 = t1 + 1; 
%end 
end 
 x = f3 + 3 * g ; t1 = tt1; 
while x < f4 + 1 
%For x = f3 + 3 * g To f4 Step 3 * g 
    kk(x, t1) = k(10, 5);kii(x, t1) = ki(10, 5); 
    kk(x + 1, t1) = k(11, 5);kii(x + 1, t1) = ki(11, 5); 
    kk(x + 2, t1) = k(12, 5);kii(x + 2, t1) = ki(12, 5); 
   % kk(t3, t3 + 1) = k(5, 8); 
    x = x + 3 * g; 
t1 = t1 + 1; 
%end 
end 
  
for x = n + 1 : n + g - 1 
kk(x, x + 1) = k(5, 8);kii(x, x + 1) = ki(5, 8); 
end 
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x = f3; t1 = tt1 + 1; 
while x < f4 - 3 * g + 1 
%For x = f3 To f4 - 3 * g Step 3 * g 
    kk(x, t1) = k(1, 8);kii(x, t1) = ki(1, 8); 
    kk(x + 1, t1) = k(2, 8);kii(x + 1, t1) = ki(2, 8); 
    kk(x + 2, t1) = k(3, 8);kii(x + 2, t1) = ki(3, 8); 
    x = x + 3 * g; 
t1 = t1 + 1; 
%end 
end 
  
%while x < n + 2 * g + 1 
for x = n + 1 : n + g 
%for x = n + 1; n + g 
    kk(x, x) = k(5, 5) + k(8, 8);kii(x, x) = ki(5, 5) + ki(8, 8); 
    %x = x + 1; 
%end 
end 
  
%Complete the symmetry 
 for x = 1 : nm 
 
    for y = 1 : nm 
    kk(y, x) = kk(x, y); kii(y, x) = kii(x, y); 
    end 
 end 
  
%Load Vector 
  
x = 1; 
while x < n + 1 
%for x = 1 ; n Step 3 
    %%for x = 1 ; n - 2 Step 3 
        q(x) = 1; 
        q(x + 1) = 0; 
         q(x + 2) = 0; 
     x = x +3; 
%end 
end 
  
%right load 
for x = n  + 1 : n + g 
    q(x) = -0.0833333333333; 
end 
  
  ncd = (n - 1) / 2; 
kgv = inv(kk);  
dd = kgv * transpose(q); 
dc = dd(ncd) *1000 / (1 + g) ^ 4; 
kki = inv(kii)* kk; 
ld = eig(kki)* (1 + g) ^ 4;   
 


